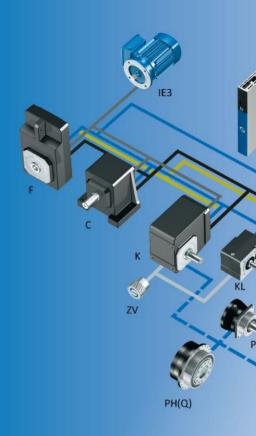


Entraînements et automatisation

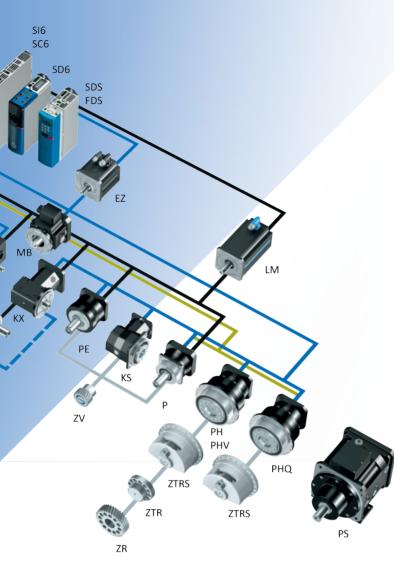

Un partenaire. Possibilités illimitées.

Depuis 1934, STOBER développe et produit une technique d'entraînement d'excellente qualité et emploie environ 800 personnes sur 14 sites à travers le monde. Les systèmes d'entraînement personnalisés et extrêmement efficaces conçus pour les mouvements complexes séduisent les fabricants de machines STOBER, tous secteurs et marchés confondus.

« Notre vision est d'être le partenaire privilégié pour le mouvement parfait ».

- Andreas Thiel, Directeur général STÖBER Antriebstechnik GmbH + Co. KG.

Entraînements et automatisation – voici ce qui vous attend!


Dans ce catalogue, nous vous présentons le système STOBER qui est une parfaite symbiose entre l'électronique et les moteurs, reliés par des câbles STOBER connectorisés prêts au raccordement.

Les servo-variateurs des 5e et 6e générations, en combinaison avec nos moteurs brushless synchrones à dynamique rapide : impossible de faire mieux !

L'expert des technologies de mouvements complexes

Réducteurs Motoréducteurs Moteurs

Câbles et servo-variateurs

Votre fournisseur tout-en-un.

Le système d'entraînement STOBER composé de réducteurs, de moteurs, de câbles et de servo-variateurs présente une structure modulaire et peut être ajusté librement – pour des concepts machine personnalisés, compacts et performants. Il peut être adapté et combiné selon vos besoins et exigences dans pratiquement tous les secteurs et domaines d'application.

Nous contrôlons chaque composant ainsi que son interaction avec les autres composants, et prenons entièrement en charge la chaîne cinématique. Pour vous, cela signifie que vous avez à faire à un interlocuteur qui vous garantit une sécurité de fonctionnement certifiée et une disponibilité maximale de la machine.

Besoin de solutions spéciales?

Elles sont possibles grâce à de nombreuses caractéristiques produit uniques et aux adaptations aux spécificités des projets. Cette approche holistique de la spécificité de votre cahier des charges nous permet d'élaborer ensemble des solutions personnalisées parfaitement adaptées à vos exigences. Engagés et à la recherche de solutions pour vous soutenir dans vos visions et vos projets.

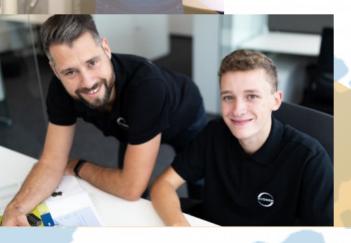
STOBER agit dans une approche globale et personnalisée.

- « Nous nous engageons avec passion et dévouement pour mettre les idées en mouvement. Forts de notre longue expérience et de notre gamme de produits particulièrement vaste, nous proposons à nos clients des systèmes globaux sur mesure, pratiques et de haute qualité, assortis d'un conseil personnalisé. »
- Patrick Stöber, Directeur général STÖBER Antriebstechnik GmbH + Co. KG.

STOBER agit avec l'esprit d'équipe et le goût des autres.

Entreprise familiale, nous établissons des relations de confiance avec nos collaborateurs, nos clients et nos partenaires. L'humain est au cœur de nos préoccupations.

Nous favorisons le bien-être de notre personnel, intégrons totalement les attentes de nos clients et mobilisons nos forces pour réussir ensemble.



- « Nous avons monté des réducteurs, moteurs et servo-variateurs STOBER dans pratiquement toutes nos installations. STOBER nous assiste dans les nouveaux projets, depuis le premier coup de crayon dans la phase de construction jusqu'à la mise en service. Nos longues années de collaboration sont marquées par un esprit de franchise et d'ouverture particulier. Conseil et support technique c'est ce que j'entends par partenariat »
- Jürgen Leicht, Directeur général de la société Leicht Stanzautomation.

Ensemble. Aux quatre coins du monde. Réussir.

C'est le regard tourné vers l'avenir que STOBER affronte les défis de la numérisation et investit dans des solutions globales et dans une forte présence dans les domaines de la production, de la vente et du service après-vente aux quatre coins du monde. Avec la fondation de STOBER China à la fin de l'année 2019, STOBER est désormais présente avec onze filiales et 80 partenaires SAV dans plus de 40 pays à travers le monde.

STOBER Drives
Systems Technology
Taicang, China.

Sommaire

1	Guide de sélection produits	9
2	Servo-variateurs SC6 1	9
3	Servo-variateurs SI64	.9
4	Servo-variateurs SD6) 1
5	Servoconvertisseurs POSIDYN SDS 5000 13	3
6	Technique de raccordement	9
7	Moteurs brushless synchrones EZ 18	17
8	À proximité des clients dans le monde entier 23	0
9	Annexe23	13

1.1 Servo-variateur

Vous trouverez une explication des symboles de formule au chapitre [9.1].

Caractéristiques

Champ d'application optimal			
Nombre d'axes	1 – 4	> 4	1-8
Application	Drive Based	CiA 402, PROFIdrive	Drive Based Synchronous
Types de moteur			
Moteurs Lean	✓	✓	
Moteurs asynchrones	✓	✓	✓
Moteurs brushless synchrones	✓	✓	✓
Moteurs linéaires			✓
Moteurs couple	✓	✓	✓
Interfaces encodeur			
EnDat 2.2 numérique	✓	✓	✓
Incrémental	✓	✓	✓
SSI	✓	✓	✓
Résolveur	✓	✓	(✓)
Signaux impulsion/direction	✓	✓	(✓)
EnDat 2.1 sin/cos			(✓)
Sin/Cos			(✓)
EnDat 3 (OCS)	✓	✓	
(√): module de borne requis			
Communication			
Bus système isochrone (IGB-Motionbus)			✓
CANopen			(✓)
EtherCAT	✓	✓	(✓)
PROFINET	✓	✓	(✓)

 (\checkmark) : module de communication requis

1.1 Servo-variateur

	0	0	5		
Chapitre	SC6	SI6		SD6	
Numéro de chapitre	[> 2]	[3]		[4]	
Caractéristiques					
Sonde thermique du moteur					
Résistance CTP	✓	✓		✓	
Sonde de température Pt1000	(✓)	(✓)		✓	
(✓) : OCS nécessaire					
Fonctions de sécurité					
STO, SS1 : SIL 3, PL e (cat. 4)	(✓)	(✓)		(√)	
SS2, SLS, SBC, SBT, SDI, SLI: SIL 3, PL e (cat. 4)				(✓)	
(✓) : module de sécurité requis					
Bornes			106	RI6	XI6
Entrées numériques	8	8	(5)	(5)	(13)
Sorties numériques	_	_	(2)	(2)	(10)
Entrées analogiques	_	_	(2)	(2)	(3)
Sorties analogiques	-	-	(2)	(2)	(2)
Prise en charge encodeur étendue	-	_	- (✓) -		_
(x) : module de borne requis					
Fonctionnalités					
Système modulaire		✓			
Autonome	✓			✓	
One Cable Solution (OCS)	✓	✓			
Régulateur double axe disponible	✓	✓			
Mise à jour en direct du micrologiciel	✓	✓		✓	
Écran et clavier				✓	
Mémoire de données amovible	✓	✓		✓	
Couplage du circuit intermédiaire	✓	✓		✓	
Applications					
Mode couple/force	✓	✓		✓	
Mode vitesse	✓	✓		✓	
Mode positionnement	✓	✓		✓	
Mode Maître/Esclave				✓	
Mode interpolation	✓	✓		✓	
Conformité					
cULus	✓	✓		✓	
CE	✓	✓	✓		
UKCA	(En cours de préparation)	(En cours de préparation)	(En cou	rs de prépa	aration)

1.1 Servo-variateur

Chapitre	SDS 5000
Numéro de chapitre	[> 5]
Caractéristiques techniques	
I _{2N,PU} (4 kHz)	2,3 – 85 A
I _{2N,PU} (8 kHz)	1,7 – 60 A
I _{2maxPU} (4 kHz)	4,2 – 153 A
I _{2maxPU} (8 kHz)	4,3 – 150 A

Vous trouverez une explication des symboles de formule au chapitre [9.1].

Caractéristiques

Champ d'application optimal	
Nombre d'axes	1-8
Application	Drive Based Synchronous
Types de moteur	
Moteurs asynchrones	✓
Moteurs brushless synchrones	✓
Interfaces encodeur	
EnDat 2.1/2.2 numérique	\checkmark
Incrémental	✓
SSI	✓
Résolveur	(✓)
Signaux d'impulsion/de direction	(✓)
EnDat 2.1 sin/cos	(✓)
(✓) : module de borne requis	
Communication	
Bus système isochrone (IGB-Motionbus)	✓
CANopen	(✓)
EtherCAT	(✓)
PROFINET	(✓)
PROFIBUS DP	(✓)
(✓): module de communication requis	
Sonde thermique du moteur	
Résistance CTP	✓
Sonde de température Pt1000	✓

1.1 Servo-variateur

Chapitre	SDS 5000			
Numéro de chapitre	[> 5]			
Caractéristiques				
Fonctions de sécurité				
STO, SS1 : SIL 3, PL e (cat. 3)		(✓)		
(√) : module de sécurité requis				
Bornes	SEA 5001	REA 5001	XEA 5001	
Entrées numériques	(5)	(5)	(13)	
Sorties numériques	(2)	(2)	(10)	
Entrées analogiques	(2)	(2)	(3)	
Sorties analogiques	(2)	(2)	(2)	
Prise en charge encodeur étendue	-	(✓)	_	
(x) : module de borne requis				
Fonctionnalités				
Autonome		✓		
Mise à jour en direct du micrologiciel		✓		
Écran et clavier		✓		
Mémoire de données amovible		✓		
Couplage du circuit intermédiaire		✓		
Applications				
Mode couple/force		✓		
Mode vitesse		✓		
Mode positionnement		✓		
Mode Maître/Esclave		✓		
Disque à came électronique		✓		
Conformité				
cULus		✓		
CE		✓		
UKCA		(En cours de préparation)		

1.2 Technique de raccordement

Chapitre	Câbles
----------	--------

Numéro de chapitre

Câbles de puissance

Modèle	Taille du connecteur moteur				
	con.15 con.23 con.40				
Fermeture rapide	✓				
Fermeture rapide speedtec		✓	✓		

Fils de puissance (3 + PE)	Fils de frein	Fils de sonde de tem- pérature	Ø câble	Rayon de courbure 1 (min.)	Rayon de courbure 2 (min.)
4 × 1,0 mm ²	2 × 0,5 mm ²	2 × 0,34 mm ²	10,1 mm max.	101,0 mm	50,5 mm
4 × 1,5 mm ²	2 × 1,0 mm ²	2 × 0,5 mm ²	12,2 mm max.	122,0 mm	61,0 mm
4 × 2,5 mm ²	2 × 1,0 mm ²	2 × 1,0 mm ²	15,0 mm max.	150,0 mm	75,0 mm
4 × 4,0 mm ²	2 × 1,0 mm ²	2 × 0,75 mm²	16,0 mm max.	160,0 mm	80,0 mm
4 × 6,0 mm ²	2 × 1,5 mm²	2 × 1,0 mm ²	19,4 mm max.	194,0 mm	97,0 mm
4 × 10,0 mm ²	2 × 1,5 mm ²	2 × 1,0 mm ²	23,5 mm max.	235,0 mm	117,5 mm

Rayon de courbure : 1 = mobile, 2 = fixe

Divers	
Sollicitation de torsion	± 30°/m
Résistant à la courbure	✓
Résistant à l'huile, aux produits chimiques	✓

1.2 Technique de raccordement

Chapitre		Câbles			
Numéro de chapitre		[> 6]			
Câbles d'encodeur					
Modèle			Taille du conr	necteur moteur	
		cor	n.15	cor	n.17
Fermeture rapide		•	/		
Fermeture rapide spee	dtec			,	/
Encodeur			Taille du conr	necteur moteur	
		cor	n.15	cor	n.17
Encodeurs EnDat 2.1/2	.2 numériques	•	/	,	/
Encodeurs EnDat 2.1 si	n/cos	✓		/	
Résolveur		•	/	✓	
Encodeur	Fils d'alimentation	Fils pilotes	Ø câble	Rayon de courbure 1 (min.)	Rayon de courbure 2 (min.)
EnDat 2.1/2.2 numé- rique	2 × 0,25 mm ²	3 × 2 × 0,14 mm ²	6,8 mm max.	68,0 mm	34,0 mm
Résolveur	2 × 0,25 mm ²	3 × 2 × 0,14 mm ²	11,4 mm max.	114,0 mm	57,0 mm
EnDat 2.1 sin/cos	2 × 0,34 mm ²	$2 \times 2 \times 0,25 \text{ mm}^2 + 4 \times 2 \times 0,14 \text{ mm}^2$			43,5 mm
Rayon de courbure : 1	= amovible, 2 = fixe				
Divers					
Sollicitation de torsion			± 30°/m		
Résistant à la courbure		✓			
Résistant à l'huile, aux produits chimiques		✓			

1.2 Technique de raccordement

Chapitre Câbles

Numéro de chapitre [> 6]

One Cable Solution EnDat 3

Modèle		Taille du connecteur moteur			
		con.23			
Fermeture rapide spee	dtec	✓			
Fils de puissance (3 + PE)	Fils de frein	Fils pilotes	Ø câble	Rayon de courbure 1 (min.)	Rayon de courbure 2 (min.)
OCS-Basic :					
4 × 1,0 mm ²	2 × 0,75 mm ²	2 × AWG22	13,6 mm max.	136,0 mm	68,0 mm
4 × 1,5 mm ²	2 × 1,0 mm ²	2 × AWG22	13,7 mm max.	137,0 mm	68,5 mm
OCS-Advanced :					
4 × 1,5 mm²	2 × 0,75 mm²	2 × AWG22	14,7 mm max.	147,0 mm	73,5 mm
4 × 2,5 mm ²	2 × 0,75 mm ²	2 × AWG22	16,8 mm max.	168,0 mm	84,0 mm

Rayon de courbure : 1 = mobile, 2 = fixe

Divers	
Sollicitation de torsion	± 30°/m
Résistant à la courbure	✓
Résistant à l'huile, aux produits chimiques	\checkmark

1.3 Moteurs brushless synchrones

Chapitre produit	EZ
Numéro de chapitre	[>7]
Caractéristiques techniques	; ;
M_N	0,89 – 77,2 Nm
M_0	0,95 – 94 Nm
Modèle d'arbre	
Arbre plein sans clavette	✓
Bride arbre creux	
Encodeur	
EnDat 3 One Cable Solution (OCS)	✓
EnDat 2.2	✓
EnDat 2.1	✓
Résolveur	\checkmark
Refroidissement	
Refroidissement par convection	✓
Ventilation forcée	✓
Frein	
Frein d'arrêt à aimant per- manent	✓
Marquages	
CE	✓
cURus	✓
UKCA	\checkmark

1.3 Moteurs brushless synchrones

1.3 Moteurs brushless synchrones

2 Servo-variateurs SC6

Table des matières

2.1	Aperçu		20
	2.1.1	Caractéristiques	21
	2.1.2	Composants logiciels	22
	2.1.3	Formation pratique	23
2.2	Caract	éristiques techniques	23
	2.2.1	Désignation de type	23
	2.2.2	Tailles	24
	2.2.3	Caractéristiques techniques générales	25
	2.2.4	Caractéristiques électriques	26
	2.2.5	Temps de cycles	32
	2.2.6	Réduction de charge	32
	2.2.7	Dimensions	34
	2.2.8	Poids	34
	2.2.9	Espaces libres minimaux	35
2.3	Combin	naisons servo-variateurs et moteurs	36
2.4	Access	oires	38
	2.4.1	Technique de sécurité	38
	2.4.2	Communication	39
	2.4.3	Jeu de bornes	39
	2.4.4	Couplage du circuit intermédiaire	40
	2.4.5	Résistance de freinage	41
	2.4.6	Self	45
	2.4.7	Module de pile d'encodeur	47
	2.4.8	Adaptateur HTL vers adaptateur TTL	47
2.5	Informa	ations supplémentaires	47
	2.5.1	Directives et normes	47
	2.5.2	Symboles et marquages	48
	2.5.3	Autres documentations	48

Servo-variateurs

SC₆

2.1 Aperçu

Notre servo-variateur compact conçu pour le moteur Lean sans encodeur

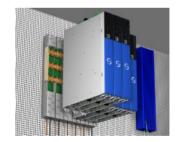
Caractéristiques

- Régulateurs mono-axe ou double axe avec un courant nominal de sortie allant jusqu'à 19 A et une capacité de surcharge de 250 %
- Régulation sans capteur de la position des moteurs Lean de STOBER
- Régulation de moteurs brushless synchrones rotatifs, de moteurs asynchrones et de moteurs couples
- One Cable Solution EnDat 3
- Plaque signalétique électronique du moteur via les interfaces encodeur EnDat
- Communication EtherCAT ou PROFINET intégrée
- Technique de sécurité STO via les bornes ou STO et SS1 via FSoE ou PROFIsafe : SIL 3, PL e (cat. 4)
- Commande de frein intégrée
- Courant nominal utilisé single-ended sur les régulateurs double axe en cas d'exploitation de moteurs de puissance différente
- Alimentation électrique par injection directe dans le réseau
- Couplage du circuit intermédiaire flexible pour les applications multiaxes

2.1.1 Caractéristiques

Le servo-variateur SC6 compact et autonome sert au réglage sans capteur de moteurs Lean de la gamme LM. Ces moteurs offrent une efficacité énergétique d'un niveau identique aux moteurs brushless synchrones. Appartenant à la classe d'efficacité énergétique IE5 qui leur confère un niveau de rendement supérieur à celui des moteurs asynchrones IE4, ils garantissent, en outre, une grande sécurité d'investissement. Mais le SC6 peut également être utilisé en combinaison avec les moteurs asynchrones ou les moteurs brushless synchrones équipés d'encodeurs (p. ex. ceux de la gamme EZ). Le SC6 est disponible en trois tailles avec un courant nominal de sortie jusqu'à 19 A : dans les tailles 0 et 1 comme régulateur double axe, dans la taille 2 comme régulateur mono-axe.

Pour les moteurs brushless synchrones STOBER, nous recommandons une exploitation avec l'encodeur En-Dat 2.2 numérique ou comme One Cable Solution avec EnDat 3. Ces systèmes d'encodeur permettent d'obtenir une qualité de régulation maximale. Le moteur peut être automatiquement paramétré à partir de sa plaque signalétique électronique.


Le servo-variateur SC6 compact développé pour les moteurs Lean de la gamme LM

La taille d'un livre ? Oui, mais d'un livre de poche!

Vous gagnez une place précieuse dans l'armoire électrique, car ce servo-variateur qui mesure seulement 45 mm de large, est la solution la plus compacte disponible sur le marché. À cet avantage s'ajoutent toutes les fonctions recherchées par les concepteurs.

Quick DC-Link

Les servo-variateurs peuvent être équipés du couplage du circuit intermédiaire. Cette technique permet d'utiliser l'énergie générée d'un entraînement par un autre entraînement sous forme d'énergie motrice. L'élément arrière Quick DC-Link a été développé afin de pouvoir installer une connexion de barres fiable et efficace vers le couplage du circuit intermédiaire. Cet accessoire disponible en option relie les circuits intermédiaires de tension continue des différents servo-variateurs à l'aide de rails en cuivre qui peuvent être sollicitées jusqu'à 200 A. Les barres sont montées sans outil par attaches de serrage rapides.

Possibilité de combinaison sur mesure

Si nécessaire, les servo-variateurs SC6 peuvent être combinés aux servo-variateurs STOBER des gammes SI6 et SD6. Pour avoir une alimentation électrique commune, les servo-variateurs des gammes SC6, SI6 et SD6 sont connectés entre eux via les modules Quick DC-Link.

Rendement énergétique sur mesure

En cas d'utilisation de modules à double axe, il est possible d'utiliser les réserves de puissance inutilisées d'un axe pour les autres axes.

Dynamique de précision

Le servo-variateur assure une accélération littéralement fulgurante. Par exemple en combinaison avec le moteur brushless synchrone STOBER EZ401 : de 0 à 3000 tr/min en 10 ms.

Quelques clics, peu de fils

Le montage du servo-variateur est on ne peut plus facile. Nul besoin de câblage fastidieux. La communication avec l'encodeur et le raccordement électrique du moteur sont regroupés dans un seul câble commun : le système d'encodeur EnDat 3 intègre la plaque signalétique électronique du moteur et permet le paramétrage facile et en toute sécurité des données moteur. Autre solution disponible : EnDat 2.2 numérique, également avec plaque signalétique électronique.

Fonctions de sécurité

Le concept de sécurité des servo-variateurs repose sur la fonction STO (Safe Torque Off). Le concept correspond au niveau SIL 3 conformément à DIN EN 61800-5-2 et PL e (cat. 4) conformément à DIN EN ISO 13849-1. Dans le cas de régulateurs double axe, la fonction de sécurité à double canal STO agit sur les deux axes. Différentes interfaces sont disponibles pour la connexion à un circuit de sécurité superposé (bornes, FSoE ou PROFIsafe).

À toute épreuve

Derrière l'aspect filigrane et élégant se cache une construction on ne peut plus robuste. Tous les composants – du carter en tôle d'acier stable à effet de blindage au connecteur moteur – dépassent de loin les valeurs de consigne imposées par les normes industrielles. L'intérieur est tout sauf de petit format : capacités de calcul généreuses, composants de qualité supérieure, finition minutieuse.

2.1.2 Composants logiciels

Planification et mise en service

Le logiciel de planification et de mise en service génération DriveControlSuite de 6e génération est doté de toutes les fonctions permettant de bénéficier pleinement des avantages des servo-variateurs dans les applications monoaxe et multiaxe. Les assistants dont est doté le programme vous guident pas à pas tout au long du processus de planification et de paramétrage.

Communication ouverte

Les systèmes de bus de terrain basés sur Ethernet EtherCAT et PROFINET sont disponibles dans le servo-variateur.

Applications

Pour le contrôle de mouvement décentralisé de machines complexes, il est recommandé d'opter pour une application basée sur l'entraînement.

Chaque fois que des solutions universelles et flexibles s'imposent, le paquet d'applications de STOBER basé sur l'entraînement représente le choix approprié. L'application Drive Based offre, avec le jeu d'instructions PLCopen Motion Control, une fonctionnalité de commande de mouvement basée sur l'entraînement pour le positionnement, la vitesse et le couple/la force. Ces instructions standard ont été regroupées pour différents cas d'application afin de constituer des modes d'exploitation et complétées par des fonctions supplémentaires comme le chaînage du bloc de déplacement, la came, etc. Dans le mode d'exploitation commande, toutes les propriétés des mouvements sont directement prédéfinies par la Commande. Dans le mode d'exploitation Bloc de déplacement, les propriétés des mouvements sont prédéfinies dans l'entraînement de sorte qu'un seul signal de départ suffit pour exécuter le mouvement. Le chaînage permet de définir des mouvements entiers. Les applications à commande de vitesse ou couple/force, comme pompes, ventilateurs ou convoyeurs, disposent de leur propre mode d'exploitation. Il permet également l'exploitation sans commande.

Il existe, par ailleurs, les applications CiA 402 et PROFIdrive qui offrent les modes d'exploitation basés aussi bien sur la commande que sur l'entraînement, ou des classes d'application.

2.1.3 Formation pratique

STOBER propose un programme de formation échelonné consacré essentiellement au servo-variateur.

G6 Basic

Contenus de la formation : aperçu du système, montage et mise en service du servo-variateur. Utilisation de modules optionnels. Paramétrage, mise en service et diagnostic via le logiciel de mise en service. Télémaintenance. Notions de base sur l'optimisation du régulateur. Configuration de la chaîne cinématique. Fonctions logicielles intégrées. Applications logicielles. Connexion à une commande supérieure. Notions de base de la technique de sécurité. Exercices pratiques dans le cadre de la formation.

Logiciel utilisé : DriveControlSuite.

G6 Customized

Contenus de la formation : connaissances spécifiques dans le domaine de la technique de régulation, de commande et de sécurité. Disque à came électronique. Exercices pratiques dans le cadre de la formation.

2.2 Caractéristiques techniques

Les caractéristiques techniques relatives aux servo-variateurs figurent dans les chapitres suivants.

2.2.1 Désignation de type

Tab. 1: Exemple de code pour la désignation de type

Code	Désignation	Modèle
SC	Gamme	
6	Génération	6e génération
Α	Version	
0 – 2	Taille (TA)	
6	Niveau de puissance	Niveau de puissance pour cette taille
2	Régulateur d'axe	Régulateur double axe
1		Régulateur mono-axe
Z	Technique de sécurité	SZ6 : sans technique de sécurité
R		SR6 : STO via les bornes
U		SU6 : STO et SS1 via PROFIsafe
Υ		SY6 : STO et SS1 via FSoE

Tab. 2: Signification de l'exemple de code

2.2.2 Tailles

Туре	Nº ID	Taille	Régulateur d'axe
SC6A062	56690	Taille 0	Régulateur double axe
SC6A162	56691	Taille 1	Régulateur double axe
SC6A261	56692	TA 2	Régulateur mono-axe

Tab. 3: Types et tailles SC6 disponibles

SC6 dans les tailles 0 à 2

Notez que l'appareil de base est livré sans bornes. Des jeux de bornes adaptés sont disponibles séparément pour chaque taille.

2.2.3 Caractéristiques techniques générales

Les informations ci-dessous s'appliquent à tous les types d'appareil.

Caractéristiques de l'appareil	
Degré de protection de l'appareil	IP20
Degré de protection de l'encombre-	Au minimum IP54
ment	
Classe de protection	Classe de protection I conformément à EN 61140
Antiparasitage	Filtre réseau intégré conformément à EN 61800-3, émission de para-
	sites classe C3
Catégorie de surtension	III conformément à EN 61800-5-1
Marquage	CE, cULus, RoHS

Tab. 4: Caractéristiques de l'appareil

Conditions de transport et de stockage		
Température de stockage/	-20 °C à +70 °C	
transport	Modification maximale : 20 K/h	
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation	
Vibration (transport) conformément	5 Hz ≤ f ≤ 9 Hz : 3,5 mm	
à EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 10 m/s ²	
	$200 \text{ Hz} \le f \le 500 \text{ Hz} : 15 \text{ m/s}^2$	
Hauteur de chute en cas de chute	0,25 m	
libre ¹		
Poids < 100 kg		
conformément à EN 61800-2		
(ou CEI 60721-3-2, classe 2M1)		

Tab. 5: Conditions de transport et de stockage

Conditions de fonctionnement	
Température ambiante en service	0 °C à 45 °C pour les caractéristiques nominales
	45 °C à 55 °C avec réduction –2,5 % / K
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation
Hauteur d'installation	0 m à 1000 m au-dessus du niveau de la mer sans restriction
	1000 m à 2000 m au-dessus du niveau de la mer avec réduction de
	charge de -1,5 % / 100 m
Degré d'encrassement	Degré d'encrassement 2 conformément à EN 50178
Ventilation	Ventilateur intégré
Vibration (fonctionnement) confor-	5 Hz ≤ f ≤ 9 Hz : 0,35 mm
mément à EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 1 m/s²

Tab. 6: Conditions de fonctionnement

Temps de décharge		
Décharge automatique circuit inter-	15 min	
médiaire CC		

Tab. 7: Temps de décharge du circuit intermédiaire

¹ S'applique uniquement aux composants dans l'emballage d'origine

2.2.4 Caractéristiques électriques

Vous trouverez les caractéristiques électriques des tailles SC6 disponibles ainsi que les propriétés du chopper de freinage dans les chapitres suivants.

Information

Respectez l'intervalle de temps entre deux mises en circuit :

- Une réactivation réitérée de la tension de réseau est possible en cas de fonctionnement marche-arrêt cyclique.
- Dans le cas d'un fonctionnement marche-arrêt continu et cyclique et d'une capacité de charge élevée, un intervalle de temps > 15 minutes est nécessaire entre deux mises en circuit.

Information

Pour un arrêt sûr, la fonction de sécurité STO est disponible comme alternative au fonctionnement marchearrêt continu et cyclique.

Une explication des symboles utilisés figure au chapitre [9.1].

2.2.4.1 Pièce de commande

Caractéristiques électriques	Tous les types
U _{1CU}	24 V _{cc} , +20 % / –15 %
I _{1maxCU}	0,5 A

Tab. 8: Caractéristiques électriques pièce de commande

2.2.4.2 Bloc de puissance : taille 0

Caractéristiques électriques	SC6A062
U _{1PU}	3 × 400 V _{CA} , +32 % / -50 %, 50/60 Hz;
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz
f _{2PU}	0 – 700 Hz
U _{2PU}	0 – max. U _{1PU}
U _{2PU,ZK}	$V2 \times U_{1PU}$
C_{PU}	270 μF
C _{N,PU}	1400 μF
C _{maxPU}	1880 μF

Tab. 9: Caractéristiques électriques SC6, taille 0

La capacité de charge dépend du temps entre deux mises en circuit :

Information

Pour la capacité de charge maximale C_{maxPU} , un intervalle de temps \geq 15 min entre deux mises en circuit doit être respecté.

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SC6A062
f _{PWM,PU}	4 kHz
I _{1N,PU}	10 A
I _{2N,PU}	2 × 4,5 A
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s

Tab. 10: Caractéristiques électriques SC6, taille 0 pour cadence 4 kHz

Caractéristiques électriques	SC6A062
f _{PWM,PU}	8 kHz
I _{1N,PU}	8,9 A
I _{2N,PU}	2 × 4 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s

Tab. 11: Caractéristiques électriques SC6, taille 0, pour cadence 8 kHz

Caractéristiques électriques	SC6A062
U _{onCH}	780 – 800 V _{cc}
U _{offCH}	740 – 760 V _{cc}
R _{2minRB}	100 Ω
P_{maxRB}	6,4 kW
P _{effRB}	2,9 kW

 $\it Tab.~12$: Caractéristiques électriques du chopper de freinage, taille 0

2.2.4.3 Bloc de puissance : taille 1

Caractéristiques électriques	SC6A162
U _{1PU}	$3 \times 400 \text{ V}_{CA}$, +32 % / -50 %, 50/60 Hz;
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz
f _{2PU}	0 – 700 Hz
U _{2PU}	0 – max. U _{1PU}
U _{2PU,ZK}	√2 × U _{1PU}
C _{PU}	940 μF
C _{N,PU}	1400 μF
C _{maxPU}	1880 μF

Tab. 13: Caractéristiques électriques SC6, taille 1

La capacité de charge dépend du temps entre deux mises en circuit :

Information

Pour la capacité de charge maximale C_{maxPU} , un intervalle de temps \geq 15 min entre deux mises en circuit doit être respecté.

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SC6A162
$f_{PWM,PU}$	4 kHz
I _{1N,PU}	23,2 A
I _{2N,PU}	2 × 10 A
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s

Tab. 14: Caractéristiques électriques SC6, taille 1 pour cadence 4 kHz

Caractéristiques électriques	SC6A162
f _{PWM,PU}	8 kHz
I _{1N,PU}	20,9 A
I _{2N,PU}	2 × 9 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s

Tab. 15: Caractéristiques électriques SC6, taille 1, pour cadence 8 kHz

Caractéristiques électriques	SC6A162
U _{onCH}	780 – 800 V _{cc}
U _{offCH}	740 – 760 V _{cc}
R _{2minRB}	47 Ω
P _{maxRB}	13,6 kW
P _{effRB}	6,2 kW

 $\it Tab.~16$: Caractéristiques électriques du chopper de freinage, taille 1

2.2.4.4 Bloc de puissance : taille 2

Caractéristiques électriques	SC6A261
U _{1PU}	3 × 400 V _{CA} , +32 % / -50 %, 50/60 Hz;
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz
f _{2PU}	0 – 700 Hz
U _{2PU}	0 – max. U _{1PU}
U _{2PU,ZK}	$\sqrt{2} \times U_{1PU}$
C _{PU}	940 μF
C _{N,PU}	1400 μF
C _{maxPU}	1880 μF

Tab. 17: Caractéristiques électriques SC6, taille 2

La capacité de charge dépend du temps entre deux mises en circuit :

Information

Pour la capacité de charge maximale C_{maxPU} , un intervalle de temps \geq 15 min entre deux mises en circuit doit être respecté.

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SC6A261
f _{PWM,PU}	4 kHz
I _{1N,PU}	22,6 A
I _{2N,PU}	19 A
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s

Tab. 18: Caractéristiques électriques SC6, taille 2 pour cadence 4 kHz

Caractéristiques électriques	SC6A261
f _{PWM,PU}	8 kHz
I _{1N,PU}	17,9 A
I _{2N,PU}	15 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s

Tab. 19: Caractéristiques électriques SC6, taille 2, pour cadence 8 kHz

Caractéristiques électriques	SC6A261
U _{onCH}	780 – 800 V _{cc}
U _{offCH}	740 – 760 V _{cc}
R _{2minRB}	47 Ω
P_{maxRB}	13,6 kW
P _{effRB}	6,2 kW

 $\textit{Tab. 20:} \ \mathsf{Caract\acute{e}ristiques}\ \mathsf{\acute{e}lectriques}\ \mathsf{du}\ \mathsf{chopper}\ \mathsf{de}\ \mathsf{freinage}, \mathsf{taille}\ \mathsf{2}$

2.2.4.5 Couplage du circuit intermédiaire

La capacité de charge des servo-variateurs ne peut être augmentée via un couplage du circuit intermédiaire que si l'alimentation secteur est activée simultanément sur les servo-variateurs.

2.2.4.6 Courant nominal asymétrique utilisé sur les régulateurs double axe

Lors du fonctionnement de deux moteurs sur un régulateur double axe, il est possible de faire tourner l'un des moteurs avec un courant durable supérieur au courant nominal du servo-variateur si le courant durable du deuxième moteur raccordé est inférieur au courant nominal du servo-variateur. Cela permet des combinaisons peu onéreuses de régulateurs doubles axes et de moteurs.

Les formules suivantes permettent de déterminer le courant de sortie de l'axe B si le courant de sortie de l'axe A est connu :

Exemple 1

$$I_{\text{2PU(B)}} = I_{\text{2N,PU}} - \left(I_{\text{2PU(A)}} - I_{\text{2N,PU}}\right) \times \frac{3}{5} \qquad \text{pour} \qquad 0 \le I_{\text{2PU(A)}} \le I_{\text{2N,PU}}$$

Exemple 2

$$I_{\text{2PU(B)}} = I_{\text{2N,PU}} - \left(I_{\text{2PU(A)}} - I_{\text{2N,PU}}\right) \times \frac{5}{3} \qquad \qquad \text{pour} \qquad \qquad I_{\text{2N,PU}} \leq I_{\text{2PU(A)}} \leq 1,6 \times I_{\text{2N,PU}} \leq 1,0 \times I_{\text{2$$

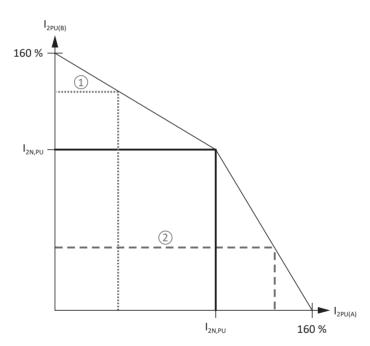


Fig. 1: Charge asymétrique sur les régulateurs doubles axes

Information

Notez que les courants maximaux disponibles I_{2maxPU} des régulateurs d'axe se rapportent au courant nominal de sortie $I_{2N,PU}$ aussi lorsqu'un courant nominal asymétrique est utilisé.

2.2.4.7 Données de puissance dissipée conformément à EN 61800-9-2

Туре	Courant nominal I _{2N,PU}	Puissance appa- rente	Pertes absolues $P_{v,cu}^{2}$		Points de fonctionnement ³							Classe IE ⁴	Compa- raison⁵
				(0/25)	(0/50)	(0/100)	(50/25)	(50/50)	(50/100)	(90/50)	(90/100)		
							Perte	es relative	s				
	[A]	[kVA]	[W]		[%]								
SC6A062	4,5	6,2	Max. 10	1,34	1,49	1,86	1,40	1,63	2,19	1,84	2,77	EI2	
SC6A162	10	13,9	Max. 10	0,76	0,92	1,43	0,81	1,04	1,75	1,22	2,29	EI2	
SC6A261	19	13,2	10	0,77	0,95	1,56	0,82	1,08	1,89	1,25	2,43	EI2	
					Pertes absolues								
					P_{V}								
	[A]	[kVA]	[W]					[W]					[%]
SC6A062	4,5	6,2	Max. 10	83,2	92,5	115,2	86,7	100,8	135,8	113,9	171,7	EI2	36,0
SC6A162	10	13,9	Max. 10	105,5	128,3	198,8	113,1	145,1	243,5	170,1	318,7	EI2	40,8
SC6A261	19	13,2	Max. 10	101,2	125,8	206,1	108,5	142,0	249,5	165,6	320,4	EI2	41,0

Tab. 21: Données de puissance dissipée des servo-variateurs SC6 conformément à la norme EN 61800-9-2

Conditions générales

Les pertes indiquées s'appliquent à un servo-variateur. Elles s'appliquent aux deux axes dans le cas de régulateurs double axe.

Les données de perte s'appliquent aux servo-variateurs sans accessoires.

Le calcul de la puissance dissipée repose sur une tension de réseau triphasée avec 400 V_{CA}/50 Hz.

Les données calculées contiennent un supplément de 10 % conformément à EN 61800-9-2.

Les données relatives à la puissance dissipée se réfèrent à une cadence de 4 kHz.

Les pertes absolues lorsque le bloc de puissance est désactivé se réfèrent à une alimentation 24 V_{cc} de l'électronique de commande.

2.2.4.8 Données de puissance dissipée des accessoires

Si vous commandez le servo-variateur avec les accessoires, les pertes augmentent comme suit.

Туре	Pertes absolues P _v [W]
Module de sécurité SR6	1
Module de sécurité SY6 ou SU6	2

Tab. 22: Pertes absolues des accessoires

Information

Pour le dimensionnement, tenez compte, en outre, de la puissance dissipée absolue de l'encodeur (normalement < 3 W) et du frein.

Les informations relatives à la perte des autres accessoires disponibles en option sont fournies dans les caractéristiques techniques des accessoires correspondants.

² Pertes absolues si le bloc de puissance est désactivé

 $^{^{3}}$ Points de fonctionnement en cas de cadence du stator moteur relative en % et de courant couple relatif en %

⁴ Classe IE conformément à EN 61800-9-2

⁵ Comparaison des pertes par rapport à la référence sur la base de EI2 dans le point nominal (90, 100)

2.2.5 Temps de cycles

Référez-vous au tableau suivant pour les temps de cycles possibles.

Туре	Temps de cycles	Paramètres utiles
Application	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain EtherCAT, communication cyclique	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain PROFINET RT, communication cyclique	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain PROFINET IRT, com- munication cyclique	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Entrées numériques	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150 ⁶
Noyau Motion (calcul du mouve- ment)	250 μs	_
Cascade de régulation	62,5 μs, 125 μs	En fonction de B24

Tab. 23: Temps de cycles

2.2.6 Réduction de charge

Lors du dimensionnement du servo-variateur, tenez compte de la réduction du courant nominal de sortie en fonction de la cadence, de la température ambiante et de la hauteur d'installation. Il n'existe aucune restriction si la température ambiante est comprise entre 0 et 45 °C et si la hauteur d'installation est située entre 0 m et 1000 m. Si les valeurs sont différentes, les données décrites ci-dessous s'appliquent.

2.2.6.1 Influence de la cadence

Le changement de la cadence f_{MLI} permet entre autres d'influencer le niveau sonore de l'entraînement. Toutefois, plus la cadence est élevée, plus il y a de pertes. Au moment de la planification, déterminez la cadence maximale qui servira de base au calcul du courant nominal de sortie $I_{2N,PU}$ pour le dimensionnement du servo-variateur.

Туре	I _{2N,PU} 4 kHz [A]	I _{2N,PU} 8 kHz [A]	I _{2N,PU} 16 kHz [A]
SC6A062	2 × 4,5	2 × 4	2 × 3
SC6A162	2 × 10	2 × 9	2 × 5
SC6A261	19	15	8

Tab. 24: Courant nominal de sortie I_{2N,PU} en fonction de la cadence

2.2.6.2 Influence de la température ambiante

La réduction de charge en fonction de la température ambiante est calculée comme suit :

- 0 °C à 45 °C : aucune restriction ($D_T = 100 \%$)
- 45 °C à 55 °C : réduction -2,5 % / K

Exemple

Le servo-variateur doit être exploité à une température de 50 °C.

Le facteur de réduction D_T est calculé de la manière suivante :

 $D_T = 100 \% - 5 \times 2,5 \% = 87,5 \%$

³²

2.2.6.3 Influence de la hauteur d'installation

La réduction de charge en fonction de la hauteur d'installation est calculée comme suit :

- de 0 m à 1000 m : aucune restriction ($D_{IA} = 100 \%$)
- de 1000 m à 2000 m : réduction de charge de -1,5 % / 100 m

Exemple

Le servo-variateur doit être installé à une hauteur de 1500 m au-dessus du niveau de la mer.

Le facteur de réduction D_{IA} est calculé de la manière suivante :

$$D_{IA} = 100 \% - 5 \times 1,5 \% = 92,5 \%$$

2.2.6.4 Calcul de la réduction

Procédez comme suit lors du calcul :

- 1. Définissez la cadence maximale (f_{PWM}) appliquée pendant le fonctionnement afin de déterminer le courant nominal $I_{2N,Pl.I}$.
- 2. Déterminez les facteurs de réduction pour la hauteur d'installation et la température ambiante.
- 3. Calculez le courant nominal réduit $I_{2N,PU(red)}$ d'après la formule suivante : $I_{2N,PU(red)} = I_{2N,PU} \times D_T \times D_IA$

Exemple

Un servo-variateur de type SC6A062 devrait être exploité à une cadence de 8 kHz à une hauteur d'installation de 1500 m d'altitude et à une température ambiante de 50 °C.

Le courant nominal du SC6A062 à 8 kHz est de 4 A par axe. Le facteur de réduction D_{τ} est calculé de la manière suivante :

$$D_T = 100 \% - 5 \times 2.5 \% = 87.5 \%$$

Le facteur de réduction D_{IA} est calculé de la manière suivante :

$$D_{IA} = 100 \% - 5 \times 1,5 \% = 92,5 \%$$

Le courant de sortie à respecter pour la planification est de :

$$I_{2N,PU(red)} = 4 A \times 0.875 \times 0.925 = 3.24 A$$

2.2.7 Dimensions

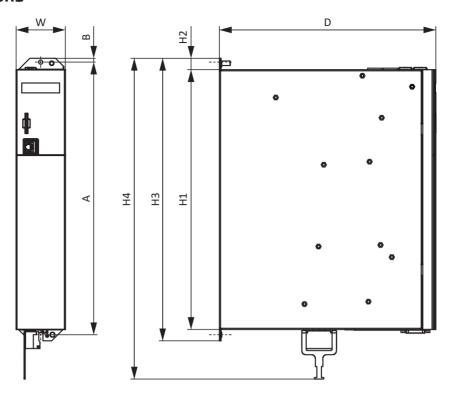


Fig. 2: Croquis coté SC6

Dimension	Taille 0	TA 1	TA 2			
Servo-variateur	Largeur	eur W 45 65				
	Profondeur	D	265	28	36	
	Hauteur du corps	Н1		343		
	Hauteur de la patte de fixation	H2	15			
	Hauteur avec	Н3	373			
	pattes de fixation incl.					
	Hauteur totale avec	Н4	423			
	raccordement du blindage incl.					
Trous de fixation (M5)	Écart vertical	Α	A 360+2			
	Écart vertical par rapport au	В				
	bord supérieur					

Tab. 25: Dimensions SC6 [mm]

2.2.8 **Poids**

Туре	Poids sans emballage [g]	Poids avec emballage [g]
SC6A062	3600	5200
SC6A162	5300	6700
SC6A261	5200	6400

Tab. 26: Poids SC6 [g]

2.2.9 Espaces libres minimaux

Servo-variateurs

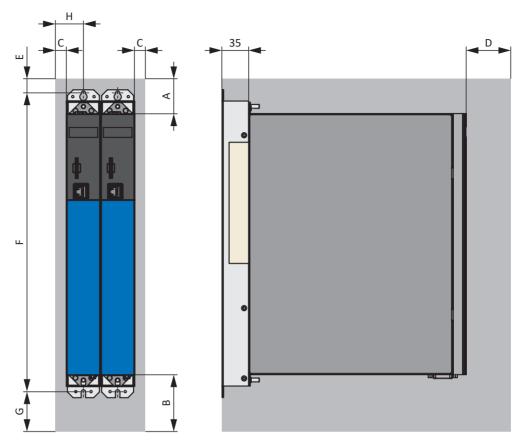


Fig. 3: Espaces libres minimaux

Les dimensions indiquées se rapportent aux bords extérieurs du servo-variateur.

Espace libre minimal	A (vers le haut)	B (vers le bas)	C (sur le côté)	D (vers l'avant)	
Toutes les tailles	100	200	5	50 ⁷	

Tab. 27: Espaces libres minimaux [mm]

Dimension	E	F	G	н
SC6A062	73,5	393+2	174,5 env.	27,5
SC6A162	73,5	393+2	174,5 env.	37,5
SC6A261				

Tab. 28: Dimensions [mm]

Self et filtre

Évitez une installation sous les servo-variateurs ou sous les modules d'alimentation. Dans le cas d'un montage dans une armoire électrique, nous recommandons d'observer une distance de 100 mm env. par rapport aux composants adjacents. Cette distance garantit la dissipation de chaleur dans les selfs et les filtres.

Résistances de freinage

Évitez une installation sous les servo-variateurs ou sous les modules d'alimentation. Pour permettre une évacuation libre de l'air chauffé, il faut observer une distance minimale de 200 mm env. par rapport aux composants ou parois adjacents et de 300 mm env. par rapports aux composants ou plafonds situés au-dessus.

⁷ Espace libre minimal à prendre en compte en cas de raccordement permanent de l'interface de maintenance X9

2.3 Combinaisons servo-variateurs et moteurs

Une explication des symboles utilisés figure au chapitre [> 9.1].

Moteur brushless synchrone EZ ($n_N = 3000 \text{ tr/min}$) – SC6

woteur brusiness syncinor	, , ,	,				0004000	0004400	0004004	0004000	0004400	0004004
						5C6A062		SC6A261	5C6A062	SC6A162	SC6A261
						I _{2N,PU} [A] (f _{MLI,PU} = 4 kHz)			$I_{2N,PU}[A]$ ($f_{MLI,PU} = 8 \text{ kHz}$)		
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M₀ [Nm]	Ι ₀ [A]	4,5	10	19	4	9	15
Refroidissement par convection IC 410						I _{2N,P}	_U / I ₀				
EZ301U	40	0,93	1,99	0,95	2,02	2,2			2,0		
EZ302U	86	1,59	1,6	1,68	1,67	2,7			2,4		
EZ303U	109	2,07	1,63	2,19	1,71	2,6			2,3		
EZ401U	96	2,8	2,74	3	2,88	1,6			1,4		
EZ402U	94	4,7	4,4	5,2	4,8		2,1			1,9	
EZ404U	116	6,9	5,8	8,6	6,6		1,5			1,4	
EZ501U	97	4,3	3,74	4,7	4	1,1			1,0		
EZ502U	121	7,4	5,46	8	5,76		1,7			1,6	
EZ503U	119	9,7	6,9	11,1	7,67		1,3			1,2	2,0
EZ505U	141	13,5	8,8	16	10		1,0	1,9			1,5
EZ701U	95	7,4	7,2	8,3	8		1,3			1,1	1,9
EZ702U	133	12	8,2	14,4	9,6		1,0	2,0			1,6
EZ703U	122	16,5	11,4	20,8	14			1,4			1,1
Ventilation forcée IC 416								I _{2N,P}	_U / I ₀		
EZ401B	96	3,4	3,4	3,7	3,6	1,3			1,1		
EZ402B	94	5,9	5,5	6,3	5,8		1,7			1,6	
EZ404B	116	10,2	8,2	11,2	8,7		1,1	2,2		1,0	1,7
EZ501B	97	5,4	4,7	5,8	5		2,0			1,8	
EZ502B	121	10,3	7,8	11,2	8,16		1,2			1,1	1,8
EZ503B	119	14,4	10,9	15,9	11,8			1,6			1,3
EZ505B	141	20,2	13,7	23,4	14,7			1,3			1,0
EZ701B	95	9,7	9,5	10,5	10		1,0	1,9			1,5
EZ702B	133	16,6	11,8	19,3	12,9			1,5			1,2

Moteur brushless synchrone EZ ($n_N = 4500 \text{ tr/min}$) – SC6

						SC6A062	SC6A162	SC6A261	SC6A062	SC6A162	SC6A261
						(f	I _{2N,PU} [A] _{MLI,PU} = 4 kH	z)	(f	I _{2N,PU} [A] _{MLI,PU} = 8 kH	z)
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	I ₀ [A]	4,5	10	19	4	9	15
Refroidissement par convection IC 410								I _{2N,P}	_U / I ₀		
EZ505U	103	9,5	8,9	15,3	13,4			1,4			1,1
EZ703U	99	12,1	11,5	20	17,8			1,1			

Moteur brushless synchrone EZ (n_N = 6000 tr/min) – SC6

						SC6A062	SC6A162	SC6A261	SC6A062	SC6A162	SC6A261
							$I_{2N,PU}$ [A]			$I_{2N,PU}$ [A]	
							$f_{MLI,PU} = 4 \text{ kH}$			$_{MLI,PU} = 8 \text{ kH}$	
	K _{EM} [V/1000 tr/min]	M _N [Nm]	Ι _Ν [A]	M ₀ [Nm]	l ₀ [A]	4,5	10	19	4	9	15
Refroidissement par conve	ction IC 410							l _{2N,P}	_U / I ₀		
EZ202U	40	0,44	1,07	0,48	1,12	4,0			3,6		
EZ203U	40	0,64	1,53	0,73	1,65	2,7			2,4		
EZ301U	40	0,89	1,93	0,95	2,02	2,2			2,0		
EZ302U	42	1,5	3,18	1,68	3,48	1,3			1,1		
EZ303U	55	1,96	3,17	2,25	3,55	1,3			1,1		
EZ401U	47	2,3	4,56	2,8	5,36		1,9			1,7	
EZ402U	60	3,5	5,65	4,9	7,43		1,3			1,2	2,0
EZ404U	78	5,8	7,18	8,4	9,78		1,0	1,9			1,5
EZ501U	68	3,4	4,77	4,4	5,8		1,7			1,6	
EZ502U	72	5,2	7,35	7,8	9,8		1,0	1,9			1,5
EZ503U	84	6,2	7,64	10,6	11,6			1,6			1,3
EZ701U	76	5,2	6,68	7,9	9,38		1,1	2,0			1,6
EZ702U	82	7,2	8,96	14,3	16,5			1,2			
Ventilation forcée IC 416								l _{2N,P}	_U / I ₀		
EZ401B	47	2,9	5,62	3,5	6,83		1,5			1,3	2,2
EZ402B	60	5,1	7,88	6,4	9,34		1,1	2,0			1,6
EZ404B	78	8	9,98	10,5	12			1,6			1,3
EZ501B	68	4,5	6,7	5,7	7,5		1,3			1,2	2,0
EZ502B	72	8,2	11,4	10,5	13,4			1,4			1,1
EZ503B	84	10,4	13,5	14,8	15,9			1,2			
EZ701B	76	7,5	10,6	10,2	12,4			1,5			1,2

2.4 Accessoires

Pour tous renseignements complémentaires sur les accessoires disponibles, voir les chapitres suivants.

2.4.1 Technique de sécurité

Information

Le servo-variateur est livré en modèle standard, sans technique de sécurité (option SZ6). Si vous souhaitez un servo-variateur avec technique de sécurité intégrée, vous devez commander cette dernière avec le servo-variateur. Les modules de sécurité font partie intégrante des servo-variateurs et ne doivent en aucun cas être modifiés.

Option SZ6 - sans technique de sécurité

Compris dans le modèle standard.

Nº ID 56660

Modèle sans technique de sécurité.

Module de sécurité SR6 - STO via les bornes

N° ID 56661

Accessoires optionnels pour l'utilisation de la fonction de sécurité Safe Torque Off (STO) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via la borne X12.

Module de sécurité SY6 - STO et SS1 via FSoE

N° ID 56662

Accessoires optionnels pour l'utilisation des fonctions de sécurité Safe Torque Off (STO) et Safe Stop 1 (SS1) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via Fail Safe over EtherCAT (FSOE).

Module de sécurité SU6 - STO et SS1 via PROFIsafe

Nº ID 56696

Accessoires optionnels pour l'utilisation des fonctions de sécurité Safe Torque Off (STO) et Safe Stop 1 (SS1) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via PROFINET (PROFIsafe).

2.4.2 Communication

Le servo-variateur est doté de deux interfaces pour la connexion via le bus de terrain sur le dessus de l'appareil ainsi que d'une interface de maintenance Ethernet sur la face avant de l'appareil. Les câbles de connexion sont disponibles séparément.

Système de bus de terrain EtherCAT ou PROFINET

Veuillez indiquer le système de bus de terrain souhaité lors de la commande de l'appareil de base, étant donné que la communication par bus de terrain est déterminée via le micrologiciel.

Câbles EtherCAT

Câble patch Ethernet, CAT5e, jaune. Les modèles suivants sont disponibles : N° ID 49313 : longueur 0,25 m env. N° ID 49314 : longueur 0,5 m env.

Câbles de connexion à l'ordinateur personnel

N° ID 49857

Câble de couplage de l'interface de maintenance X9 à l'ordinateur personnel, CAT5e, bleu, 5 m.

Adaptateur Ethernet USB 2.0

N° ID 49940

Adaptateur pour le couplage d'Ethernet sur un port USB.

2.4.3 Jeu de bornes

Un jeu de borne adapté est requis pour le raccordement de chaque servo-variateur SC6.

Jeu de bornes pour servo-variateur – option SZ6 (sans technique de sécurité), SU6 (STO et SS1 via PROFIsafe) ou SY6 (STO et SS1 via FSoE)

(Illustration non contractuelle)

Les modèles suivants sont disponibles : Nº ID 138652

Jeu de bornes pour SC6A062Z/U/Y.

Nº ID 138653

Jeu de bornes pour SC6A162Z/U/Y.

Nº ID 138654

Jeu de bornes pour SC6A261Z/U/Y.

Jeu de bornes pour servo-variateur – option SR6 (STO via les bornes)

(Illustration non contractuelle)

Les modèles suivants sont disponibles :

N° ID 138680

Jeu de bornes pour SC6A062R.

N° ID 138681

Jeu de bornes pour SC6A162R.

Nº ID 138682

Jeu de bornes pour SC6A261R.

2.4.4 Couplage du circuit intermédiaire

Si vous souhaitez coupler le servo-variateur SC6 au sein du bus CC, vous avez besoin des modules Quick DC-Link de type DL6B.

Pour le couplage horizontal, vous recevrez les modules arrière DL6B d'exécutions différentes adaptés à la taille du servo-variateur.

Les attaches de serrage rapides pour la fixation des rails en cuivre ainsi qu'un raccord isolant font partie de la livraison. Les rails en cuivre ne font pas partie de la livraison. Ils doivent présenter une section de 5 x 12 mm. Les embouts isolants sont disponibles séparément.

Quick DC-Link DL6B pour servo-variateurs

Les exécutions suivantes sont disponibles :

DL6B10

N° ID 56655

Module arrière pour servo-variateurs de taille 0 :

SC6A062

DL6B11

N° ID 56656

Module arrière pour servo-variateurs de taille 1 ou 2 :

SC6A162 et SC6A261

Quick DC-Link DL6B Embout isolant

N° ID 56659

Embout isolant pour les extrémités droite et gauche du réseau, 2 pièces.

2.4.5 Résistance de freinage

Outre les servo-variateurs, STOBER propose les résistances de freinage décrites ci-dessous, de construction et de classe de puissance différentes. Au moment de votre choix, tenez compte des résistances de freinage minimales admissibles indiquées dans les caractéristiques techniques des différents types de servo-variateur.

2.4.5.1 Résistance tubulaire fixe FZMU, FZZMU

Туре	FZMU 400×65	FZZMU 400×65
Nº ID	49010	53895
SC6A062	X	_
SC6A162	(X)	X
SC6A261	(X)	Х

Tab. 29: Affectation résistance de freinage FZMU, FZZMU – Servo-variateur SC6

X Recommandé(X) Possible— Impossible

Propriétés

Spécification	FZMU 400×65	FZZMU 400×65
Nº ID	49010	53895
Туре	Résistance tubulaire fixe	Résistance tubulaire fixe
Résistance [Ω]	100 ±10 %	47 ±10 %
Dérive de température	±10 %	±10 %
Puissance [W]	600	1200
Const. temps therm. τ_{th} [s]	40	40
Puissance d'impulsion pour < 1 s [kW]	18	36
U _{max} [V]	848	848
Poids sans emballage [g]	2200	4170
Degré de protection	IP20	IP20
Marquage	cURus, CE, UKCA	cURus, CE, UKCA

Tab. 30: Spécification FZMU, FZZMU

Dimensions

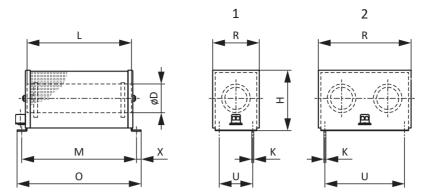


Fig. 4: Croquis coté FZMU (1), FZZMU (2)

Dimension	FZMU 400×65	FZZMU 400×65
Nº ID	49010	53895
LxD	400 × 65	400 × 65
Н	120	120
К	6,5 × 12	6,5 × 12
M	430	426
0	485	485
R	92	185
U	64	150
X	10	10

Tab. 31: Dimensions FZMU, FZZMU [mm]

2.4.5.2 Résistance plane GVADU, GBADU

Туре	GVADU 210×20	GBADU 265×30	GBADU 335×30
Nº ID	55441	55442	55443
SC6A062	X	X	_
SC6A162	(X)	(X)	X
SC6A261	(X)	(X)	X

Tab. 32: Affectation résistance de freinage GVADU, GBADU – Servo-variateur SC6

X Recommandé

(X) Possible

Impossible

Propriétés

Spécification	GVADU 210×20	GBADU 265×30	GBADU 335×30
Nº ID	55441	55442	55443
Туре		Résistance plane	
Résistance [Ω]	100 ±10 %	100 ±10 %	47 ±10 %
Dérive de température	±10 %	±10 %	±10 %
Puissance [W]	150	300	400
Const. temps therm. τ_{th} [s]	60	60	60
Puissance d'impulsion pour < 1 s [kW]	3,3	6,6	8,8
U _{max} [V]	848	848	848
Exécution de câble	Radox	FEP	FEP
Longueur de câble [mm]	500	1500	1500
Section de conducteur [AWG]	18/19	14/19	14/19
	(0,82 mm²)	(1,9 mm²)	(1,9 mm²)
Poids sans emballage [g]	300	930	1200
Degré de protection	IP54	IP54	IP54
Marquage		cURus, CE, UKCA	

Tab. 33: Spécification GVADU, GBADU

Dimensions

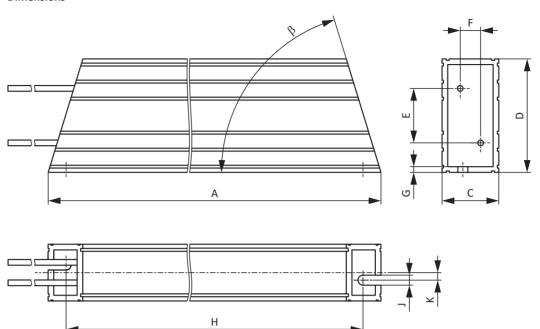


Fig. 5: Croquis coté GVADU, GBADU

Dimension	GVADU 210×20	GBADU 265×30	GBADU 335×30
N° ID	55441	55442	55443
Α	210	265	335
Н	192	246	316
С	20	30	30
D	40	60	60
E	18,2	28,8	28,8
F	6,2	10,8	10,8
G	2	3	3
K	2,5	4	4
J	4,3	5,3	5,3
β	65°	73°	73°

Tab. 34: Dimensions GVADU, GBADU [mm]

2.4.6 Self

Pour les caractéristiques techniques relatives aux selfs de sortie correspondants, consultez les chapitres suivants.

2.4.6.1 Self de sortie TEP

Les selfs de sortie sont nécessaires pour le raccordement de servo-variateurs de taille 0 à 2 aux moteurs brushless synchrones ou aux moteurs asynchrones à partir d'une longueur de câble > 50 m afin de réduire les impulsions parasites et de ménager le système d'entraînement. Lors du raccordement de moteurs Lean, aucun self de sortie ne doit être utilisé.

Information

Les caractéristiques techniques ci-dessous s'appliquent pour une fréquence du champ tournant de 200 Hz. Vous atteindrez cette fréquence par exemple avec un moteur à quatre paires de pôles et à la vitesse de rotation nominale de 3000 tr/min. Pour les fréquences du champ tournant supérieures, respectez dans tous les cas la réduction de charge indiquée. Par ailleurs, tenez également compte de la dépendance de la cadence.

Propriétés

Spécification	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41
Nº ID	53188	53189	53190
Plage de tension		3 × 0 à 480 V _{CA}	
Gamme de fréquence		0 – 200 Hz	
Courant nominal I _{N,MF} à 4 kHz	4 A	17,5 A	38 A
Courant nominal I _{N,MF} à 8 kHz	3,3 A	15,2 A	30,4 A
Longueur de câble moteur		100 m	
max. admissible avec			
self de sortie			
Température		40 °C	
ambiante max. $\vartheta_{\text{amb,max}}$			
Degré de protection		IP00	
Pertes d'enroulement	11 W	29 W	61 W
Pertes de fer	25 W	16 W	33 W
Raccordement		Borne à vis	
Section de conducteur max.		10 mm ²	
UL Recognized		Oui	
Component (CAN ; USA)			
Marquage		cURus, CE	

Tab. 35: Spécification TEP

Dimensions

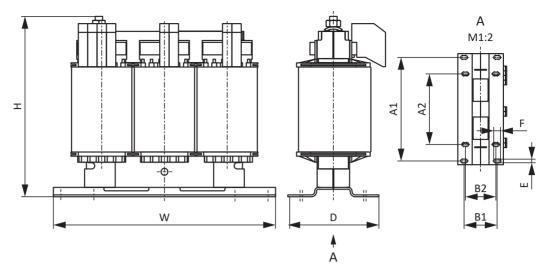


Fig. 6: Croquis coté TEP

Dimension	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41
Hauteur H [mm]	153 max.	153 max.	180 max.
Largeur W [mm]	178	178	219
Profondeur D [mm]	73	88	119
Écart vertical –	166	166	201
Trous de fixation A1 [mm]			
Écart vertical –	113	113	136
Trous de fixation A2 [mm]			
Écart horizontal –	53	68	89
Trous de fixation B1 [mm]			
Écart horizontal –	49	64	76
Trous de fixation B2 [mm]			
Trous percés – Profondeur E [mm]	5,8	5,8	7
Trous percés – Largeur F [mm]	11	11	13
Raccord à vis – M	M5	M5	M6
Poids sans emballage [g]	2900	5900	8800

Tab. 36: Dimensions et poids TEP

2.4.7 Module de pile d'encodeur

Absolute Encoder Support AES

N° ID 55452

Module de pile pour la mise en mémoire tampon de la tension d'alimentation en cas d'utilisation d'encodeurs inductifs EnDat 2.2 numériques avec étage Multiturn sauvegardé par pile, par exemple EBI1135 ou EBI135. Une pile est fournie.

Information

Notez que pour des raisons éventuelles d'encombrement, vous avez besoin d'un câble de rallonge à 15 pôles entre le connecteur femelle et AES pour le raccordement au servo-variateur.

• Entre le connecteur femelle et AES, il est possible d'utiliser un câble de rallonge blindé du commerce avec un connecteur mâle D-sub à 15 pôles et d'une longueur ≤ 1 m.

Pile amovible AES

N° ID 55453

Pile amovible pour le module de pile AES.

2.4.8 Adaptateur HTL vers adaptateur TTL

Adaptateur HTL vers adaptateur TTL HT6

N° ID 56665

Adaptateur pour servo-variateurs des gammes SC6 et SI6 pour la conversion de niveau de signaux HTL aux signaux TTL.

Il sert au raccordement d'un encodeur incrémental HTL différentiel à la borne X4 du servo-variateur.

2.5 Informations supplémentaires

2.5.1 Directives et normes

Les directives et normes européennes suivantes s'appliquent aux servo-variateurs :

- Directive Machines 2006/42/CE
- Directive Basse tension 2014/35/UE
- Directive CEM 2014/30/UE
- EN ISO 13849-1:2015
- EN ISO 13849-2:2012
- EN 61800-3:2018
- EN 61800-5-1:2017
- EN 61800-5-2:2017

2.5.2 Symboles et marquages

Symbole de mise à la terre

Symbole de mise à la terre conformément à CEI 60417, symbole 5019.

Marquage sans plomb RoHS

Marquage conformément à la Directive RoHS 2011-65-UE sur la limitation des substances dangereuses.

Marquage CE

Auto-déclaration du fabricant : le produit satisfait aux directives UE.

Marquage UKCA

Autodéclaration du fabricant : le produit est conforme aux directives du Royaume-Uni.

Marquage UL

Ce produit est certifié pour une utilisation conforme à la norme UL pour les États-Unis et le Canada.

Plusieurs échantillons représentatifs de ce produit ont été testés pour une utilisation UL et sont conformes aux normes applicables.

Marquage UL pour les composants reconnus

Ces composants ou ce matériel sont certifiés UL. Des échantillons représentatifs de ce produit ont fait l'objet d'une évaluation UL et satisfont aux exigences applicables.

2.5.3 Autres documentations

Vous trouverez d'autres documentations relatives au produit à l'adresse http://www.stoeber.de/fr/download

Saisissez le nº ID de la documentation dans le champ <u>Critère de recherche</u>.

Documentation	ID
Manuel servo-variateurs SC6	442791

3 Servo-variateurs SI6

Table des matières

3.1	Aperçu		50
	3.1.1	Caractéristiques	51
	3.1.2	Composants logiciels	52
	3.1.3	Formation pratique	53
3.2	Caracte	éristiques techniques	54
	3.2.1	Caractéristiques techniques générales	54
	3.2.2	Servo-variateurs	55
	3.2.3	Module d'alimentation	63
	3.2.4	Couplage du circuit intermédiaire	68
	3.2.5	Espaces libres minimaux	72
3.3	Combin	naisons servo-variateurs et moteurs	74
3.4	Access	oires	76
	3.4.1	Technique de sécurité	76
	3.4.2	Communication	77
	3.4.3	Jeu de bornes	78
	3.4.4	Couplage du circuit intermédiaire	79
	3.4.5	Résistance de freinage	80
	3.4.6	Self	85
	3.4.7	Module de pile d'encodeur	89
	3.4.8	Adaptateur HTL vers adaptateur TTL	89
3.5	Informa	ations supplémentaires	90
	3.5.1	Directives et normes	90
	3.5.2	Symboles et marquages	90
	3.5.3	Autres documentations	90

Servo-variateurs

SI6

3.1 Aperçu

Régulation de l'entraînement en système modulaire

Caractéristiques

- Régulateurs mono-axe ou double axe avec un courant nominal de sortie allant jusqu'à 50 A et une capacité de surcharge de 250 %
- Modules d'alimentation jusqu'à une puissance nominale de 50 kW
- Régulation sans capteur de la position des moteurs Lean de STOBER
- Régulation de moteurs brushless synchrones rotatifs, de moteurs asynchrones et de moteurs couples
- One Cable Solution EnDat 3
- Plaque signalétique électronique du moteur via les interfaces encodeur EnDat
- Communication EtherCAT ou PROFINET intégrée
- Technique de sécurité STO via les bornes ou STO et SS1 via FSoE ou PROFIsafe : SIL 3, PL e (cat. 4)
- Commande de frein intégrée
- Alimentation électrique via le couplage du circuit intermédiaire
- Courant nominal utilisé single-ended sur les régulateurs double axe en cas d'exploitation de moteurs de puissance différente
- Puissance d'alimentation variable par des modules d'alimentation pouvant être branchés en parallèle

3.1.1 Caractéristiques

Le nouveau système modulaire STOBER, entièrement repensé, se compose d'une combinaison d'un servo-variateur SI6 et du module d'alimentation PS6. Les modules Quick DC-Link adaptés assurent l'alimentation électrique des servo-variateurs en réseau. Le servo-variateur SI6 est disponible dans quatre tailles comme régulateur mono-axe ou double axe avec un courant nominal de sortie allant jusqu'à 50 A. Le module d'alimentation PS6 est disponible dans trois tailles avec une puissance nominale comprise entre 10 kW et 50 kW. Système économique et extrêmement compact, le SI6 offre de nouvelles perspectives pour les applications multiaxe.

Pour les moteurs brushless synchrones STOBER, nous recommandons une exploitation avec l'encodeur En-Dat 2.2 numérique ou comme One Cable Solution avec EnDat 3. Ces systèmes d'encodeur permettent d'obtenir une qualité de régulation maximale. Le moteur peut être automatiquement paramétré à partir de sa plaque signalétique électronique.

Réglage de l'entraînement en système modulaire avec SI6 et PS6

La taille d'un livre ? Oui, mais d'un livre de poche!

Vous gagnez une place précieuse dans l'armoire électrique, car ce servo-variateur qui mesure seulement 45 mm de large, est la solution la plus compacte disponible sur le marché. À cet avantage s'ajoutent toutes les fonctions recherchées par les concepteurs.

Dimensionnement sur mesure des capacités

4, 16 ou 97 axes ? Un seul servo-variateur SI6 peut piloter jusqu'à deux axes. Grâce à ce système modulaire, vous pouvez définir votre architecture machine sur mesure. Si nécessaire, les servo-variateurs SI6 peuvent être combinés aux unités autonomes des gammes STO-BER SC6 ou SD6. Pour avoir une alimentation électrique commune, il est possible de relier entre eux les servo-variateurs des gammes SI6, SC6 et SD6 via les modules Quick DC-Link.

Rendement énergétique sur mesure

Les servo-variateurs SI6 sont reliés à un module d'alimentation central. Les modules d'alimentation, fusibles et câbles ne sont plus nécessaires pour chaque axe. En cas d'utilisation de modules à double axe, il est possible d'utiliser les réserves de puissance inutilisées d'un axe pour le deuxième axe. Une mesure qui permet de réduire considérablement les coûts et l'encombrement!

Dynamique de précision

Le servo-variateur assure une accélération littéralement fulgurante. Par exemple en combinaison avec le moteur brushless synchrone STOBER EZ401 : de 0 à 3000 tr/min en 10 ms.

Quelques clics, peu de fils

L'installation est extrêmement facile. Aucun câblage fastidieux. Les modules brevetés Quick DC-Link permettent un emboîtement facile des rails en cuivre standard ainsi que le montage et le raccordement aisés des servo-variateurs. La communication avec l'encodeur et le raccordement électrique du moteur sont regroupés dans un seul câble commun : le système d'encodeur EnDat 3 intègre la plaque signalétique électronique du moteur et permet le paramétrage facile et en toute sécurité des données moteur. Autre solution disponible : EnDat 2.2 numérique, également avec plaque signalétique électronique.

Fonctions de sécurité

Le concept de sécurité des servo-variateurs repose sur la fonction STO (Safe Torque Off). Le concept correspond au niveau SIL 3 conformément à DIN EN 61800-5-2 et PL e (cat. 4) conformément à DIN EN ISO 13849-1. Dans le cas de régulateurs double axe, la fonction de sécurité à double canal STO agit sur les deux axes. Différentes interfaces sont disponibles pour la connexion à un circuit de sécurité superposé (bornes, FSoE ou PROFIsafe).

À toute épreuve

Derrière l'aspect filigrane et élégant se cache une construction on ne peut plus robuste. Tous les composants – du carter en tôle d'acier stable à effet de blindage au connecteur moteur – dépassent de loin les valeurs de consigne imposées par les normes industrielles. L'intérieur est tout sauf de petit format : capacités de calcul généreuses, composants de qualité supérieure, finition minutieuse.

3.1.2 Composants logiciels

Planification et mise en service

Le logiciel de planification et de mise en service génération DriveControlSuite de 6e génération est doté de toutes les fonctions permettant de bénéficier pleinement des avantages des servo-variateurs dans les applications monoaxe et multiaxe. Les assistants dont est doté le programme vous guident pas à pas tout au long du processus de planification et de paramétrage.

Communication ouverte

Les systèmes de bus de terrain basés sur Ethernet EtherCAT et PROFINET sont disponibles dans le servo-variateur.

Applications

Pour le contrôle de mouvement centralisé de machines complexes, il est recommandé d'opter pour une application basée sur la commande.

Avec les modes d'exploitation basés sur la commande de l'application CiA 402 (csp, csv, cst, ip) ou la classe d'application basée sur la commande de l'application PROFIdrive (AC4), réalisez des applications avec une définition cyclique des valeurs de consigne synchronisée par une commande Motion Control. Par ailleurs, les servo-variateurs peuvent aussi effectuer de manière autonome des tâches de mouvement, p. ex. des courses de référençage et des déplacements pas à pas lors de la mise en service.

Les applications basées sur l'entraînement Drive Based et Drive Based Synchronous ainsi que les modes d'exploitation basés sur l'entraînement de l'application CiA 402 (pp, pv, pt) et les classes d'application basées sur l'entraînement de l'application PROFIdrive (AC1, AC3) sont également disponibles.

3.1.3 Formation pratique

STOBER propose un programme de formation échelonné consacré essentiellement au servo-variateur.

G6 Basic

Contenus de la formation : aperçu du système, montage et mise en service du servo-variateur. Utilisation de modules optionnels. Paramétrage, mise en service et diagnostic via le logiciel de mise en service. Télémaintenance. Notions de base sur l'optimisation du régulateur. Configuration de la chaîne cinématique. Fonctions logicielles intégrées. Applications logicielles. Connexion à une commande supérieure. Notions de base de la technique de sécurité. Exercices pratiques dans le cadre de la formation.

Logiciel utilisé : DriveControlSuite.

G6 Customized

Contenus de la formation : connaissances spécifiques dans le domaine de la technique de régulation, de commande et de sécurité. Disque à came électronique. Exercices pratiques dans le cadre de la formation.

3.2 Caractéristiques techniques

Les caractéristiques techniques relatives aux servo-variateurs, aux modules d'alimentation et aux accessoires figurent dans les chapitres suivants.

3.2.1 Caractéristiques techniques générales

Les données suivantes s'appliquent de la même manière au servo-variateur SI6 et au module d'alimentation PS6.

Caractéristiques de l'appareil				
Degré de protection de l'appareil	IP20			
Degré de protection de l'encombre-	Au minimum IP54			
ment				
Classe de protection	Classe de protection I conformément à EN 61140			
Antiparasitage	Filtre réseau intégré conformément à EN 61800-3, émission de para-			
	sites classe C3			
Catégorie de surtension	III conformément à EN 61800-5-1			
Marquage	CE, cULus, RoHS			

Tab. 1: Caractéristiques de l'appareil

Conditions de transport et de stockage		
Température de stockage/	-20 °C à +70 °C	
transport	Modification maximale : 20 K/h	
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation	
Vibration (transport) conformément	5 Hz ≤ f ≤ 9 Hz : 3,5 mm	
à EN 60068-2-6	9 Hz \leq f \leq 200 Hz : 10 m/s ²	
	$200 \text{ Hz} \le f \le 500 \text{ Hz} : 15 \text{ m/s}^2$	
Hauteur de chute en cas de chute	0,25 m	
libre ¹		
Poids < 100 kg		
conformément à EN 61800-2		
(ou CEI 60721-3-2, classe 2M1)		

Tab. 2: Conditions de transport et de stockage

Conditions de fonctionnement	
Température ambiante en service	0 °C à 45 °C pour les caractéristiques nominales
	45 °C à 55 °C avec réduction –2,5 % / K
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation
Hauteur d'installation	0 m à 1000 m au-dessus du niveau de la mer sans restriction
	1000 m à 2000 m au-dessus du niveau de la mer avec réduction de
	charge de -1,5 % / 100 m
Degré d'encrassement	Degré d'encrassement 2 conformément à EN 50178
Ventilation	Ventilateur intégré
Vibration (fonctionnement) confor-	5 Hz ≤ f ≤ 9 Hz : 0,35 mm
mément à EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 1 m/s²

Tab. 3: Conditions de fonctionnement

Temps de décharge	
Décharge automatique circuit inter-	15 min
médiaire CC	
Décharge rapide circuit intermé-	Par le module d'alimentation PS6 en combinaison avec une résis-
diaire CC	tance de freinage :
	< 1 min

Tab. 4: Temps de décharge du circuit intermédiaire

3.2.2 Servo-variateurs

Les chapitres suivants contiennent les caractéristiques électriques, les dimensions et le poids du servo-variateur.

3.2.2.1 Désignation de type

Tab. 5: Exemple de code pour la désignation de type du servo-variateur

Code	Désignation	Modèle
SI	Gamme	
6	Génération	6e génération
Α	Version	
0 – 3	Taille (TA)	
6	Niveau de puissance	Niveau de puissance pour cette taille
1	Régulateur d'axe	Régulateur mono-axe
2		Régulateur double axe
Z	Technique de sécurité	SZ6 : sans technique de sécurité
R		SR6 : STO via les bornes
U		SU6 : STO et SS1 via PROFIsafe
Υ		SY6 : STO et SS1 via FSoE

Tab. 6: Signification de l'exemple de code

3.2.2.2 Tailles

Туре	N° ID	Taille	Régulateur d'axe
SI6A061	56645	TA 0	Régulateur mono-axe
SI6A062	56646	TA 0	Régulateur double axe
SI6A161	56647	TA 1	Régulateur mono-axe
SI6A162	56648	TA 1	Régulateur double axe
SI6A261	56649	TA 2	Régulateur mono-axe
SI6A262	56653	TA 2	Régulateur double axe
SI6A361	56654	TA 3	Régulateur mono-axe

Tab. 7: Types et tailles SI6 disponibles

SI6 dans les tailles 0 à 3

Notez que l'appareil de base est livré sans bornes. Des jeux de bornes adaptés sont disponibles séparément pour chaque taille.

3.2.2.3 Caractéristiques électriques

Pour obtenir les caractéristiques électriques des tailles SI6 disponibles, consultez les chapitres suivants.

Une explication des symboles utilisés figure au chapitre [> 9.1].

3.2.2.3.1 Pièce de commande

Caractéristiques électriques	Tous les types		
U _{1CU}	24 V _{cc} , +20 % / -15 %		
I _{1maxCU}	0,5 A		

Tab. 8: Caractéristiques électriques pièce de commande

3.2.2.3.2 Bloc de puissance : taille 0

Caractéristiques électriques	SI6A061	SI6A062
U _{1PU}	280 – 800 V _{cc}	
f _{2PU}	0 – 700 Hz	
U_{2PU}	$0 - \text{max.} \frac{U_{1PU}}{\sqrt{2}}$	
C _{PU}	180 μF	270 μF

Tab. 9: Caractéristiques électriques SI6, taille 0

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SI6A061	SI6A062
f _{PWM,PU}	4 k	Hz
I _{2N,PU}	5 A	2 × 5 A
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s	

Tab. 10: Caractéristiques électriques SI6, taille 0 pour cadence 4 kHz

Caractéristiques électriques	SI6A061	SI6A062
f _{PWM,PU}	8 k	KHz
I _{2N,PU}	4,5 A	2 × 4,5 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s	

Tab. 11: Caractéristiques électriques SI6, taille 0, pour cadence 8 kHz

3.2.2.3.3 Bloc de puissance : taille 1

Caractéristiques électriques	SI6A161	SI6A162
U _{1PU}	280 – 800 V _{cc}	
f _{2PU}	0 – 700 Hz	
U _{2PU}	0 – ma:	X. U1PU √2
C_{PU}	470 μF	940 μF

Tab. 12: Caractéristiques électriques SI6, taille 1

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SI6A161	SI6A162
f _{PWM,PU}	4 k	Hz
I _{2N,PU}	12 A	2 × 12 A
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s	

Tab. 13: Caractéristiques électriques SI6, taille 1 pour cadence 4 kHz

Caractéristiques électriques	SI6A161	SI6A162
f _{PWM,PU}	81	kHz
I _{2N,PU}	10 A	2 × 10 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s	

Tab. 14: Caractéristiques électriques SI6, taille 1, pour cadence 8 kHz

3.2.2.3.4 Bloc de puissance : taille 2

Caractéristiques électriques	SI6A261	SI6A262				
U _{1PU}	280 – 800 V _{cc}					
f_{2PU}	0 – 700 Hz					
U _{2PU}	$0 - \max_{1} \frac{U_{1PU}}{\sqrt{2}}$					
C _{PU}	940 μF 2250 μF					

Tab. 15: Caractéristiques électriques SI6, taille 2

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SI6A261	SI6A262				
f _{PWM,PU}	4 kHz					
I _{2N,PU}	22 A	2 × 25 A				
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s					

Tab. 16: Caractéristiques électriques SI6, taille 2 pour cadence 4 kHz

Caractéristiques électriques	SI6A261	SI6A262			
$f_{PWM,PU}$	8 8	KHz			
I _{2N,PU}	20 A	2 × 20 A			
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s				

Tab. 17: Caractéristiques électriques SI6, taille 2, pour cadence 8 kHz

3.2.2.3.5 Bloc de puissance : taille 3

Caractéristiques électriques	SI6A361
U _{1PU}	280 – 800 V _{cc}
f_{2PU}	0 – 700 Hz
U_{2PU}	$0 - \text{max.} \frac{U_{1PU}}{\sqrt{2}}$
C_{PU}	2250 μF

Tab. 18: Caractéristiques électriques SI6, taille 3

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Caractéristiques électriques	SI6A361
f _{PWM,PU}	4 kHz
I _{2N,PU}	50 A
I _{2maxPU}	210 % pour 2 s ; 150 % pour 30 s

Tab. 19: Caractéristiques électriques SI6, taille 3, pour cadence 4 kHz

Caractéristiques électriques	SI6A361
f _{PWM,PU}	8 kHz
I _{2N,PU}	40 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s

Tab. 20: Caractéristiques électriques SI6, taille 3, pour cadence 8 kHz

3.2.2.3.6 Courant nominal asymétrique utilisé sur les régulateurs double axe

Lors du fonctionnement de deux moteurs sur un régulateur double axe, il est possible de faire tourner l'un des moteurs avec un courant durable supérieur au courant nominal du servo-variateur si le courant durable du deuxième moteur raccordé est inférieur au courant nominal du servo-variateur. Cela permet des combinaisons peu onéreuses de régulateurs doubles axes et de moteurs.

Les formules suivantes permettent de déterminer le courant de sortie de l'axe B si le courant de sortie de l'axe A est connu :

Exemple 1

$$I_{\text{2PU(B)}} = I_{\text{2N,PU}} - \left(I_{\text{2PU(A)}} - I_{\text{2N,PU}}\right) \times \frac{3}{5} \qquad \qquad \text{pour} \qquad \qquad 0 \leq I_{\text{2PU(A)}} \leq I_{\text{2N,PU}} + I_{\text{2N,PU}} +$$

Exemple 2

$$I_{\text{2PU(B)}} = I_{\text{2N,PU}} - \left(I_{\text{2PU(A)}} - I_{\text{2N,PU}}\right) \times \frac{5}{3} \\ \qquad \qquad \text{pour} \\ I_{\text{2N,PU}} \leq I_{\text{2PU(A)}} \leq 1, 6 \times I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} + I_{\text{2N,PU}} \\ = I_{\text{2N,PU}} + I_{\text{2N,PU$$

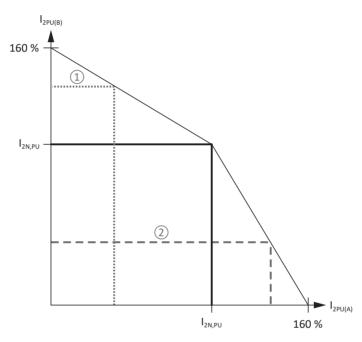


Fig. 1: Charge asymétrique sur les régulateurs doubles axes

Information

Notez que les courants maximaux disponibles I_{2maxPU} des régulateurs d'axe se rapportent au courant nominal de sortie $I_{2N,PU}$ aussi lorsqu'un courant nominal asymétrique est utilisé.

3.2.2.3.7 Données de puissance dissipée conformément à EN 61800-9-2

Туре	Courant nominal I _{2N,PU}	Puissance appa- rente	Pertes absolues $P_{v,cu}^{2}$		Points de fonctionnement ³				Classe IE ⁴	Compa- raison ⁵			
				(0/25)	(0/50)	(0/100)	(50/25)	(50/50)	(50/100)	(90/50)	(90/100)		
							Perte	s relatives	5				
	[A]	[kVA]	[W]					[%]					
SI6A06x	5	3,5	Max. 10	0,71	0,86	1,33	0,76	0,97	1,61	1,13	2,13	EI2	
SI6A16x	12	8,3	Max. 10	0,55	0,71	1,19	0,59	0,80	1,44	0,94	1,87	EI2	
SI6A261	22	16,6	Max. 10	0,55	0,71	1,19	0,59	0,80	1,44	0,94	1,87	EI2	
SI6A262	25	17,3	Max. 10	0,45	0,62	1,12	0,50	0,74	1,47	0,95	2,12	EI2	
SI6A361	50	34,6	Max. 10	0,45	0,62	1,12	0,50	0,74	1,47	0,95	2,12	EI2	
							Pertes	absolues	P_{V}				
	[A]	[kVA]	[W]					[W]					[%]
SI6A06x	5	3,5	Max. 10	25	30,2	46,5	26,5	33,8	56,5	39,5	74,4	EI2	24,9
SI6A16x	12	8,3	Max. 10	45,7	58,7	98,7	49,1	66,3	119,6	78,1	155,4	EI2	26,7
SI6A261	22	16,6	Max. 10	91,5	117,4	197,3	98,2	132,6	239,2	156,2	310,8	EI2	30,8
SI6A262	25	17,3	Max. 10	77,9	106,5	193,0	87,1	127,9	254,3	163,8	367,6	EI2	36,4
SI6A361	50	34,6	Max. 10	155,8	213,1	386,0	174,3	255,8	508,6	327,6	735,2	EI2	39,5

Tab. 21: Données de puissance dissipée conformément à EN 61800-9-2 pour un axe de servo-variateur SI6

Conditions générales

Les pertes indiquées s'appliquent à chaque axe de servo-variateur et tiennent partiellement compte des pertes du module d'alimentation PS6 pour cet axe.

Dans le cas d'un réseau avec un nombre d'axes x, multiplier les valeurs par le nombre de régulateurs d'axes (x), p. ex. x = 4 pour $1 \times PS6$ et $2 \times SI6A062$.

Les données de perte s'appliquent aux servo-variateurs sans accessoires.

Le calcul de la puissance dissipée repose sur une tension de réseau triphasée avec $400 \, V_{CA}/50 \, Hz$.

Les données calculées contiennent un supplément de 10 % conformément à EN 61800-9-2.

Les données relatives à la puissance dissipée se réfèrent à une cadence de 4 kHz.

Les pertes absolues lorsque le bloc de puissance est désactivé se réfèrent à une alimentation $24 \, V_{cc}$ de l'électronique de commande.

3.2.2.3.8 Données de puissance dissipée des accessoires

Si vous commandez le servo-variateur avec les accessoires, les pertes augmentent comme suit.

Туре	Pertes absolues P _v [W]
Module de sécurité SR6	1
Module de sécurité SY6 ou SU6	2

Tab. 22: Pertes absolues des accessoires

Information

Pour le dimensionnement, tenez compte, en outre, de la puissance dissipée absolue de l'encodeur (normalement < 3 W) et du frein.

Les informations relatives à la perte des autres accessoires disponibles en option sont fournies dans les caractéristiques techniques des accessoires correspondants.

² Pertes absolues si le bloc de puissance est désactivé

 $^{^{\}rm 3}$ Points de fonctionnement en cas de cadence du stator moteur relative en % et de courant couple relatif en %

⁴ Classe IE conformément à EN 61800-9-2

⁵ Comparaison des pertes par rapport à la référence sur la base de EI2 dans le point nominal (90, 100)

3.2.2.4 Temps de cycles

Référez-vous au tableau suivant pour les temps de cycles possibles.

Туре	Temps de cycles	Paramètres utiles
Application	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain EtherCAT, communication cyclique	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain PROFINET RT, communication cyclique	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain PROFINET IRT, com- munication cyclique	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Entrées numériques	250 μs, 500 μs, 1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150 ⁶
Noyau Motion (calcul du mouve- ment)	250 μs	_
Cascade de régulation	62,5 μs, 125 μs	En fonction de B24

Tab. 23: Temps de cycles

3.2.2.5 Réduction de charge

Lors du dimensionnement du servo-variateur, tenez compte de la réduction du courant nominal de sortie en fonction de la cadence, de la température ambiante et de la hauteur d'installation. Il n'existe aucune restriction si la température ambiante est comprise entre 0 et 45 °C et si la hauteur d'installation est située entre 0 m et 1000 m. Si les valeurs sont différentes, les données décrites ci-dessous s'appliquent.

3.2.2.5.1 Influence de la cadence

Le changement de la cadence f_{MLI} permet entre autres d'influencer le niveau sonore de l'entraînement. Toutefois, plus la cadence est élevée, plus il y a de pertes. Au moment de la planification, déterminez la cadence maximale qui servira de base au calcul du courant nominal de sortie $I_{2N,PU}$ pour le dimensionnement du servo-variateur.

Туре	I _{2N,PU} 4 kHz [A]	I _{2N,PU} 8 kHz [A]	Ι _{2Ν,ΡU} 16 kHz [A]
SI6A061	5	4,5	3,5
SI6A062	2 × 5	2 × 4,5	2 × 3,5
SI6A161	12	10	6
SI6A162	2 × 12	2 × 10	2 × 6
SI6A261	22	20	10
SI6A262	2 × 25	2 × 20	2 × 10
SI6A361	50	40	_

Tab. 24: Courant nominal de sortie I_{2N,PU} en fonction de la cadence

3.2.2.5.2 Influence de la température ambiante

La réduction de charge en fonction de la température ambiante est calculée comme suit :

- 0 °C à 45 °C : aucune restriction ($D_T = 100 \%$)
- 45 °C à 55 °C : réduction -2,5 % / K

Exemple

Le servo-variateur doit être exploité à une température de 50 °C.

Le facteur de réduction D_T est calculé de la manière suivante :

 $D_T = 100 \% - 5 \times 2.5 \% = 87.5 \%$

⁶⁰

3.2.2.5.3 Influence de la hauteur d'installation

La réduction de charge en fonction de la hauteur d'installation est calculée comme suit :

- de 0 m à 1000 m : aucune restriction (D_{IA} = 100 %)
- de 1000 m à 2000 m : réduction de charge de −1,5 % / 100 m

Exemple

Le servo-variateur doit être installé à une hauteur de 1500 m au-dessus du niveau de la mer.

Le facteur de réduction D_{IA} est calculé de la manière suivante :

$$D_{IA} = 100 \% - 5 \times 1,5 \% = 92,5 \%$$

3.2.2.5.4 Calcul de la réduction de charge

Procédez comme suit lors du calcul :

- 1. Définissez la cadence maximale (f_{PWM}) appliquée pendant le fonctionnement afin de déterminer le courant nominal $I_{2N,PU}$.
- 2. Déterminez les facteurs de réduction pour la hauteur d'installation et la température ambiante.
- 3. Calculez le courant nominal réduit $I_{2N,PU(red)}$ d'après la formule suivante : $I_{2N,PU(red)} = I_{2N,PU} \times D_T \times D_{IA}$

Exemple

Un servo-variateur de type SI6A061 devrait être exploité à une cadence de 8 kHz à une hauteur d'installation de 1500 m d'altitude et à une température ambiante de 50 °C.

Le courant nominal du SI6A061 à 8 kHz est de 4,5 A. Le facteur de réduction $D_{\scriptscriptstyle T}$ est calculé de la manière suivante :

$$D_T = 100 \% - 5 \times 2,5 \% = 87,5 \%$$

Le facteur de réduction D_{IA} est calculé de la manière suivante :

$$D_{1A} = 100 \% - 5 \times 1,5 \% = 92,5 \%$$

Le courant de sortie à respecter pour la planification est de :

$$I_{2N,PU(red)} = 4.5 \text{ A} \times 0.875 \times 0.925 = 3.64 \text{ A}$$

3.2.2.6 Dimensions

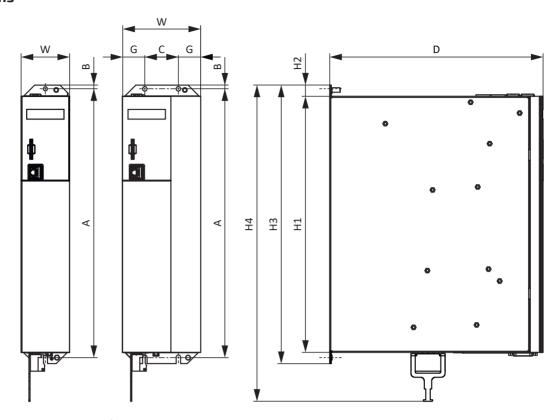


Fig. 2: Croquis coté SI6

Dimension				SI6A161 SI6A162	SI6A261	SI6A262	SI6A361
Servo-variateur	Largeur	W	45	45 65 105)5
	Profondeur	D	265		28	86	
	Hauteur du corps	Н1			343		
	Hauteur de la patte de fixation	H2			15		
	Hauteur avec	НЗ	373				
	pattes de fixation incl.						
	Hauteur totale avec	Н4	423				
raccordement du blindage i							
Trous de fixation	Écart vertical	Α			360+2		
(M5)	Écart vertical par rapport au	В			5	5	
	bord supérieur						
	Écart horizontal des trous de C —		4	5			
	fixation						
	Écart horizontal par rapport au bord latéral	G		_		3	0

Tab. 25: Dimensions SI6 [mm]

3.2.2.7 Poids

Туре	Poids sans emballage [g]	Poids avec emballage [g]
SI6A061	2980	4600
SI6A062	3460	5060
SI6A161	3880	5260
SI6A162	4820	6240
SI6A261	4760	6200
SI6A262	6240	7420
SI6A361	6180	7360

Tab. 26: Poids SI6 [g]

3.2.3 Module d'alimentation

Les chapitres suivants contiennent les caractéristiques électriques, les dimensions et le poids du module d'alimentation.

3.2.3.1 Désignation de type

Tab. 27: Exemple de code pour la désignation de type du module d'alimentation

Code	Désignation	Modèle
PS	Gamme	
6	Génération	6e génération
Α	Version	
2 – 4	Taille (TA)	
4	Niveau de puissance	

Tab. 28: Signification de l'exemple de code

3.2.3.2 Tailles

Туре	Nº ID	Taille
PS6A24	56650	TA 2
PS6A34	56651	TA 3
PS6A44	138679	TA 4

Tab. 29: Types et tailles PS6 disponibles

PS6 dans les tailles 2 à 4

Notez que l'appareil de base est livré sans bornes. Des jeux de bornes adaptés sont disponibles séparément pour chaque taille.

3.2.3.3 Caractéristiques électriques

Vous trouverez les caractéristiques électriques des tailles PS6 disponibles ainsi que les propriétés du chopper de freinage dans les chapitres suivants.

Information

Pour un arrêt sûr, la fonction de sécurité STO est disponible comme alternative au fonctionnement marchearrêt continu et cyclique.

Une explication des symboles utilisés figure au chapitre [9.1].

3.2.3.3.1 Pièce de commande

Caractéristiques électriques	Tous les types
U _{1CU}	24 V _{cc} , +20 % / –15 %
I _{1maxCU}	0,5 A

Tab. 30: Caractéristiques électriques pièce de commande

3.2.3.3.2 Bloc de puissance : taille 2

Caractéristiques électriques	PS6A24	
U _{1PU}	$3 \times 400 \text{ V}_{CA}$, +32 % / -50 %, 50/60 Hz;	
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz	
U _{2PU,ZK}	$\sqrt{2} \times U_{1PU}$	
$P_{N,PU}$	10 kW	
I _{1N,PU}	25 A	
I _{1maxPU}	I _{1N,PU} × 180 % pour 5 s ;	
	I _{1N,PU} × 150 % pour 30 s	
$C_{N,PU}$	5000 μF	

Tab. 31: Caractéristiques électriques PS6, taille 2

3.2.3.3.3 Bloc de puissance : taille 3

Caractéristiques électriques	PS6A34
U _{1PU}	3 × 400 V _{CA} , +32 % / -50 %, 50/60 Hz;
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz
U _{2PU,ZK}	$\sqrt{2} \times U_{_{1PU}}$
P _{N,PU}	20 kW
I _{1N,PU}	50 A
I _{1maxPU}	I _{1N,PU} × 180 % pour 5 s ;
	I _{1N,PU} × 150 % pour 30 s
C _{N,PU}	10000 μF

Tab. 32: Caractéristiques électriques PS6, taille 3

3.2.3.3.4 Bloc de puissance : taille 4

Caractéristiques électriques	PS6A44	
U _{1PU}	$3 \times 400 \text{ V}_{CA'} + 32 \% / -50 \%, 50/60 \text{ Hz};$	
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz	
U _{2PU,ZK}	$\sqrt{2} \times U_{1PU}$	
$P_{N,PU}$	50 kW	
I _{1N,PU}	92 A	
I _{1maxPU}	I _{1N,PU} × 180 % pour 5 s ;	
	I _{1N,PU} × 150 % pour 30 s	
C _{N,PU}	20000 μF	

Tab. 33: Caractéristiques électriques PS6, taille 4

3.2.3.3.5 Branchement en parallèle

Seuls les modules d'alimentation des tailles 2 ou 3 sont autorisés pour le branchement en parallèle.

Lorsque les modules d'alimentation sont branchés en parallèle, la puissance et le courant augmentent. Ici, il faut tenir compte d'une réduction de la somme avec un facteur de 0,8.

La capacité de charge des modules d'alimentation ne peut être augmentée via un branchement en parallèle que si l'alimentation secteur est activée simultanément sur les modules d'alimentation. En cas d'augmentation de la capacité de charge, il faut également tenir compte d'une réduction de la somme avec un facteur de 0,8.

Le tableau suivant présente des exemples de combinaisons pour le branchement en parallèle.

Caractéristiques électriques	2 x PS6A24	3 x PS6A24	2 x PS6A34	3 x PS6A34
P _{N,PU}	16 kW	24 kW	32 kW	48 kW
I _{1N,PU}	40 A	60 A	80 A	120 A
C _{maxPU}	8000 μF	12000 μF	16000 μF	24000 μF

Tab. 34: Caractéristiques électriques en branchement en parallèle, exemples de combinaison

Les conditions générales suivantes s'appliquent pour le branchement en parallèle de plusieurs modules d'alimentation PS6 :

- Seuls les modules d'alimentation des tailles 2 et 3 sont autorisés pour le branchement en parallèle.
- Seules des tailles identiques sont autorisées pour le branchement en parallèle.
- Vous pouvez brancher en parallèle trois PS6A34 au maximum.

3.2.3.3.6 Chopper de freinage

Caractéristiques électriques	PS6A24	PS6A34
U _{onCH}	780 – 800 V _{cc}	
U _{offCH}	740 – 760 V _{cc}	
R _{2minRB}	22 Ω	
P _{maxRB}	29,1 kW	
P _{effRB}	27,2 kW	

Tab. 35: Caractéristiques électriques du chopper de freinage, tailles 2 et 3

Caractéristiques électriques	PS6A44
U _{onCH}	780 – 800 V _{cc}
U _{offCH}	740 – 760 V _{cc}
R _{2minRB}	9,5 Ω
P _{maxRB}	67,3 kW
P_{effRB}	27,2 kW

Tab. 36: Caractéristiques électriques du chopper de freinage, taille 4

3.2.3.3.7 Décharge rapide

La décharge rapide est activée si la tension d'alimentation fait défaut pendant 20 s et si la tension du circuit intermédiaire a baissé pendant ce laps de temps. Si la décharge rapide est activée, le circuit intermédiaire sera déchargé par le chopper de freinage et la résistance de freinage. Si la tension du circuit intermédiaire est constante ou si elle augmente, il n'y a pas de décharge rapide car ce comportement indique l'existence d'un deuxième module d'alimentation dans le réseau de circuit intermédiaire. Si la sonde thermique de la résistance de freinage est active, la décharge rapide ne réagit pas non plus.

3.2.3.4 Dimensions

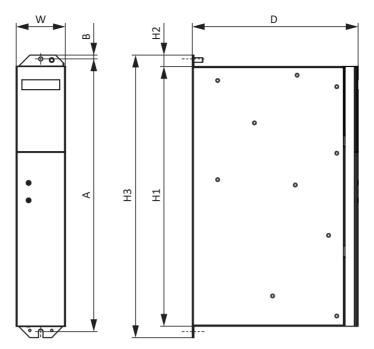


Fig. 3: Croquis coté PS6A24, PS6A34

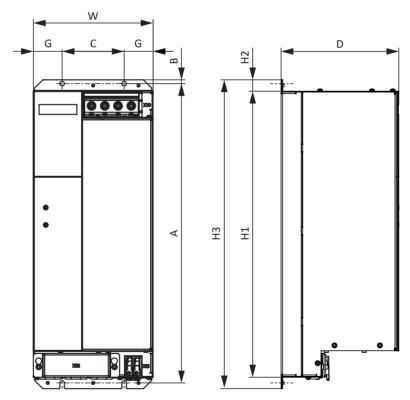


Fig. 4: Croquis coté PS6A44

Dimension			PS6A24	PS6A34	PS6A44
Module d'alimentation	Largeur	W	45	65	158
	Profondeur	D	204	219	156,5
	Hauteur du corps	H1	34	43	378
	Hauteur de la patte de fixation	H2		15	
	Hauteur avec	Н3	37	73	408
	pattes de fixation incl.				
Trous de fixation (M5)	Écart vertical	Α	360	0+2	396+2
	Écart vertical par rapport au	В		5	
	bord supérieur				
	Écart horizontal des trous de	С	-	_	82
	fixation				
	Écart horizontal par rapport au	G	-	-	38
	bord latéral				

Tab. 37: Dimensions PS6 [mm]

3.2.3.5 Poids

Туре	Poids sans emballage [g]	Poids avec emballage [g]
PS6A24	2680	4180
PS6A34	3820	4920
PS6A44	6640	7640

Tab. 38: Poids PS6 [g]

3.2.4 Couplage du circuit intermédiaire

Les chapitres suivants contiennent les caractéristiques électriques, les dimensions et le poids des modules Quick DC-Link DL6B.

3.2.4.1 Caractéristiques techniques générales

Les informations ci-dessous s'appliquent à tous les modules Quick DC-Link et sont conformes aux caractéristiques techniques générales de l'appareil de base.

Caractéristiques de l'appareil	
Degré de protection de l'appareil	IP20 (si surmonté d'un servo-variateur ou module d'alimentation)
Classe de protection	Classe de protection I conformément à EN 61140 (si surmonté d'un servo-variateur ou module d'alimentation)
Degré de protection de l'encombrement	Au minimum IP54

Tab. 39: Caractéristiques de l'appareil

Conditions de transport et de stockage	
Température de stockage/	−20 °C à +70 °C
transport	Modification maximale : 20 K/h
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation
Vibration (transport) conformément à	5 Hz ≤ f ≤ 9 Hz : 3,5 mm
EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 10 m/s ²
	200 Hz ≤ f ≤ 500 Hz : 15 m/s ²
Hauteur de chute en cas de chute libre ⁷	0,25 m
Poids < 100 kg	
conformément à EN 61800-2	
(ou CEI 60721-3-2, classe 2M1)	

Tab. 40: Conditions de transport et de stockage

Conditions de fonctionnement		
Température ambiante en service	0 °C à 45 °C pour les caractéristiques nominales	
	45 °C à 55 °C avec réduction –2,5 % / K	
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation	
Hauteur d'installation	0 m à 1000 m au-dessus du niveau de la mer sans restriction	
	1000 m à 2000 m au-dessus du niveau de la mer avec réduction	
	de charge de -1,5 % / 100 m	
Degré d'encrassement	Degré d'encrassement 2 conformément à EN 50178	
Vibration (fonctionnement) conformé-	5 Hz ≤ f ≤ 9 Hz : 0,35 mm	
ment à EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 1 m/s ²	

Tab. 41: Conditions de fonctionnement

3.2.4.2 Affectation DL6B – SI6 et PS6

Le DL6B est disponible dans les exécutions suivantes adaptées aux différents types de servo-variateurs et de modules d'alimentation :

Туре	DL6B10	DL6B11	DL6B12	DL6B20	DL6B21	DL6B22
Nº ID	56655	56656	56663	56657	56658	5050114
SI6A061	Х	_	_	_	_	_
SI6A062	Х	_	_	_	_	_
SI6A161	_	Х	_	_	_	_
SI6A162	_	X	_	_	_	_
SI6A261	_	X	_	_	_	_
SI6A262	_	_	X	_	_	_
SI6A361	_	_	X	_	_	_
PS6A24	_	_	_	X	_	_
PS6A34	_	_	_	_	Х	_
PS6A44	_	_	_	_	_	Х

Tab. 42: Affectation DL6B à SI6 et PS6

3.2.4.3 Dimensions

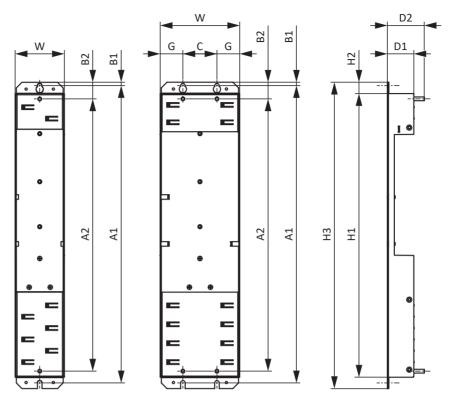


Fig. 5: Croquis coté DL6B10 à DL6B21

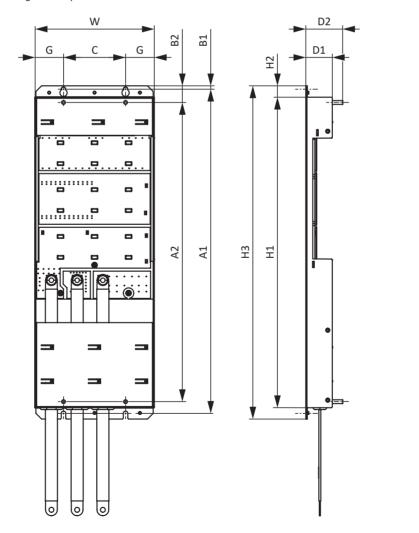


Fig. 6: Croquis coté DL6B22

Dimension			DL6B10 DL6B20	DL6B11 DL6B21	DL6B12	DL6B22
Quick DC-Link	Largeur	W	45	65	105	158
	Profondeur	D1	35			
	Profondeur avec	D2	49			
	boulons de fixation incl.					
	Hauteur	Н1	375		410,5	
	Hauteur de la patte de fixation	H2	15			
	Hauteur avec	Н3	405		440,5	
	pattes de fixation incl.					
Trous de fixation	Écart vertical	A1	393+2		429+2	
	(fixation murale)					
	Écart vertical	A2	360		396	
	(fixation du module)					
Écart vertical par rapport au		B1		4	,5	
	bord supérieur					
	Écart vertical par rapport au	B2	22			
	bord supérieur					
	Écart horizontal des trous de	С	-	-	45	82
	fixation					
	Écart horizontal par rapport au	G	-	_	30	38
	bord latéral					

Tab. 43: Dimensions DL6B [mm]

3.2.4.4 Poids

Туре	Poids sans emballage [g]	Poids avec emballage [g]
DL6B10	440	480
DL6B11	560	600
DL6B12	880	920
DL6B20	480	520
DL6B21	740	780
DL6B22	1400	1440

Tab. 44: Poids DL6B [g]

3.2.5 Espaces libres minimaux

Servo-variateurs et modules d'alimentation

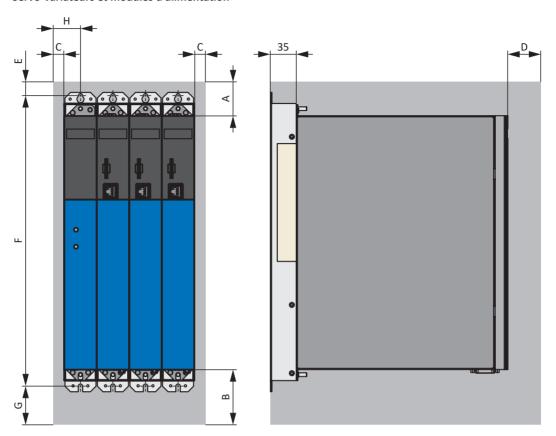


Fig. 7: Espaces libres minimaux pour les servo-variateurs en combinaison avec le module d'alimentation PS6A24 ou PS6A34

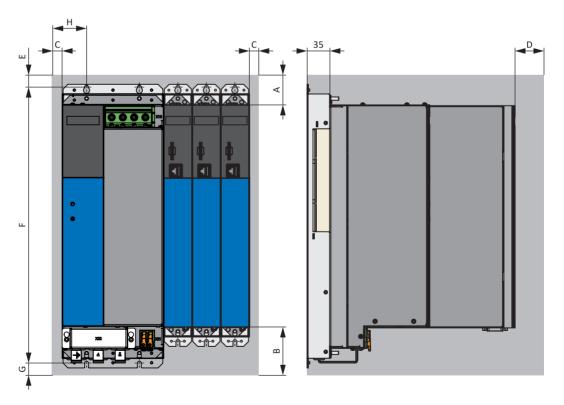


Fig. 8: Espaces libres minimaux pour les servo-variateurs en combinaison avec le module d'alimentation PS6A44

Les dimensions indiquées se rapportent aux bords extérieurs du servo-variateur ou du module d'alimentation, module arrière Quick DC-Link compris.

Espace libre minimal	A (vers le haut)	B (vers le bas)	C (sur le côté)	D (vers l'avant)	
Toutes les tailles	100	200	5	50 ⁸	

Tab. 45: Espaces libres minimaux [mm]

Dimension	E	F	G	н
PS6A24	73,5	393+2	174,5 env.	27,5
PS6A34	73,5	393+2	174,5 env.	37,5
PS6A44	73,5	429+2	138,5 env.	43

Tab. 46: Dimensions [mm]

Self et filtre

Évitez une installation sous les servo-variateurs ou sous les modules d'alimentation. Dans le cas d'un montage dans une armoire électrique, nous recommandons d'observer une distance de 100 mm env. par rapport aux composants adjacents. Cette distance garantit la dissipation de chaleur dans les selfs et les filtres.

Résistances de freinage

Évitez une installation sous les servo-variateurs ou sous les modules d'alimentation. Pour permettre une évacuation libre de l'air chauffé, il faut observer une distance minimale de 200 mm env. par rapport aux composants ou parois adjacents et de 300 mm env. par rapports aux composants ou plafonds situés au-dessus.

⁸ Espace libre minimal à prendre en compte en cas de raccordement permanent de l'interface de maintenance X9

3.3 Combinaisons servo-variateurs et moteurs

Une explication des symboles utilisés figure au chapitre [> 9.1].

Moteur brushless synchrone EZ ($n_N = 2000 \text{ tr/min}$) – SI6

							SI6A161 SI6A162	SI6A261	SI6A262	SI6A361		SI6A161 SI6A162	SI6A261	SI6A262	SI6A361
							(f _N	I _{2N,PU} [A] _{MLI,PU} = 4 kH	lz)			(f _n	I _{2N,PU} [A] _{ILI,PU} = 8 kH	z)	
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	Ι ₀ [A]	5	12	22	25	50	4,5	10	20	20	40
Refroidisse	ment par conve	ction IC	2 410							I _{2N,P}	_U / I ₀				
EZ805U	142	43,7	25,9	66,1	37,9					1,3					1,1

Moteur brushless synchrone EZ (n_N = 3000 tr/min) - SI6

							SI6A161 SI6A162	SI6A261	SI6A262	SI6A361		SI6A161 SI6A162	SI6A261	SI6A262	SI6A361
							(f.	I _{2N,PU} [A] _{MLI,PU} = 4 kH	łz)			(f,	I _{2N,PU} [A] _{MLI,PU} = 8 kF	Hz)	
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	I ₀ [A]	5	12	22	25	50	4,5	10	20	20	40
Refroidisse	ement par conve	ction IC	2 410							l _{2N,P}	_U / I ₀				
EZ301U	40	0,93	1,99	0,95	2,02	2,5					2,2				
EZ302U	86	1,59	1,6	1,68	1,67	3,0					2,7				
EZ303U	109	2,07	1,63	2,19	1,71	2,9					2,6				
EZ401U	96	2,8	2,74	3	2,88	1,7					1,6				
EZ402U	94	4,7	4,4	5,2	4,8	1,0						2,1			
EZ404U	116	6,9	5,8	8,6	6,6		1,8					1,5			
EZ501U	97	4,3	3,74	4,7	4	1,3					1,1				
EZ502U	121	7,4	5,46	8	5,76		2,1					1,7			
EZ503U	119	9,7	6,9	11,1	7,67		1,6					1,3			
EZ505U	141	13,5	8,8	16	10		1,2	2,0				1,0	2,0	2,0	
EZ701U	95	7,4	7,2	8,3	8		1,5					1,3			
EZ702U	133	12	8,2	14,4	9,6		1,3					1,0	2,1	2,1	
EZ703U	122	16,5	11,4	20,8	14			1,6	1,8				1,4	1,4	
EZ705U	140	21,3	14,2	30,2	19,5			1,1	1,3				1,0	1,0	2,1
EZ802U	136	22,3	13,9	37,1	22,3				1,1						1,8
EZ803U	131	26,6	17,7	48,2	31,1					1,6					1,3
Ventilation	n forcée IC 416									I _{2N.P}	υ / Ι ο				
EZ401B	96	3,4	3,4	3,7	3,6	1,4					1,3				
EZ402B	94	5,9	5,5	6,3	5,8	.,.	2,1				.,.	1,7			
EZ404B	116	10,2	8,2	11,2	8,7		1,4					1,1		2,0	
EZ501B	97	5,4	4,7	5,8	5	1,0	,					2,0		,-	
EZ502B	121	10,3	7,8	11,2	8,16	,	1,5					1,2			
EZ503B	119	14,4	10,9	15,9	11,8		1,0	1,9	2,1			,	1,7	1,7	
EZ505B	141	20,2	13,7	23,4	14,7			1,5	1,7				1,4	1,4	
EZ701B	95	9,7	9,5	10,5	10		1,2	2,2	,			1,0	2,0	2,0	
EZ702B	133	16,6	11,8	19,3	12,9		,	1,7	1,9			,-	1,6	1,6	
EZ703B	122	24	18,2	28	20			1,1	1,3				1,0	1,0	2,0
EZ705B	140	33,8	22,9	41,8	26,5			,	,	1,9			,-	,	1,5
EZ802B	136	34,3	26,5	47,9	28,9					1,7					1,4
EZ803B	131	49	35,9	66,7	42,3					1,2					

Moteur brushless synchrone EZ ($n_N = 4500 \text{ tr/min}$) – SI6

						SI6A061 SI6A062	SI6A161 SI6A162	SI6A261	SI6A262	SI6A361	SI6A061 SI6A062	SI6A161 SI6A162	SI6A261	SI6A262	SI6A361	
							I _{2N,PU} [A] (f _{MLI,PU} = 4 kHz)					$I_{2N,PU} [A]$ $(f_{MLL,PU} = 8 \text{ kHz})$				
	K _{EM} [V/1000 tr/min]	M _N [Nm]	Ι _Ν [A]	M ₀ [Nm]	Ι ₀ [A]	5	12	22	25	50	4,5	10	20	20	40	
Refroidisser	Refroidissement par convection IC 410						$I_{2N,PU}/I_0$									
EZ505U	103	9,5	8,9	15,3	13,4			1,6	1,9				1,5	1,5		
EZ703U	99	12,1	11,5	20	17,8			1,2	1,4				1,1	1,1		
EZ705U	106	16,4	14,8	30	25,2					2,0					1,6	
EZ802U	90	10,5	11,2	34,5	33,3					1,5					1,2	
Ventilation •	forcée IC 416					$I_{2N,PU} / I_0$										
EZ505B	103	16,4	16,4	22	19,4			1,1	1,3				1,0	1,0	2,1	
EZ703B	99	19,8	20,3	27,2	24,2				1,0	2,1					1,7	
EZ705B	106	27,7	25,4	39,4	32,8					1,5					1,2	
EZ802B	90	30,6	30,5	47,4	45,1					1,1						

Moteur brus	Noteur brushless synchrone EZ (n _N = 6000 tr/min) – SI6														
							SI6A161 SI6A162	SI6A261	SI6A262	SI6A361		SI6A161 SI6A162	SI6A261	SI6A262	SI6A361
							(f,	I _{2N,PU} [A] _{ALI,PU} = 4 kH	łz)			(f,	I _{2N,PU} [A] _{MLI,PU} = 8 kH	lz)	
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	I ₀ [A]	5	12	22	25	50	4,5	10	20	20	40
Refroidisser	nent par conve	ction IC	2 410							l _{2N,P}	υ / I ₀				
EZ202U	40	0,44	1,07	0,48	1,12	4,5					4,0				
EZ203U	40	0,64	1,53	0,73	1,65	3,0					2,7				
EZ301U	40	0,89	1,93	0,95	2,02	2,5					2,2				
EZ302U	42	1,5	3,18	1,68	3,48	1,4					1,3				
EZ303U	55	1,96	3,17	2,25	3,55	1,4					1,3				
EZ401U	47	2,3	4,56	2,8	5,36		2,2					1,9			
EZ402U	60	3,5	5,65	4,9	7,43		1,6					1,3			
EZ404U	78	5,8	7,18	8,4	9,78		1,2					1,0	2,0	2,0	
EZ501U	68	3,4	4,77	4,4	5,8		2,1					1,7			
EZ502U	72	5,2	7,35	7,8	9,8		1,2					1,0	2,0	2,0	
EZ503U	84	6,2	7,64	10,6	11,6		1,0	1,9	2,2				1,7	1,7	
EZ701U	76	5,2	6,68	7,9	9,38		1,3					1,1	2,1	2,1	
EZ702U	82	7,2	8,96	14,3	16,5			1,3	1,5				1,2	1,2	
Ventilation	forcée IC 416									I _{2N,P}	_U / I ₀				
EZ401B	47	2,9	5,62	3,5	6,83		1,8					1,5			
EZ402B	60	5,1	7,88	6,4	9,34		1,3					1,1	2,1	2,1	
EZ404B	78	8	9,98	10,5	12		1,0	1,8	2,1				1,7	1,7	
EZ501B	68	4,5	6,7	5,7	7,5		1,6					1,3			
EZ502B	72	8,2	11,4	10,5	13,4			1,6	1,9				1,5	1,5	
EZ503B	84	10,4	13,5	14,8	15,9			1,4	1,6				1,3	1,3	
EZ701B	76	7,5	10,6	10,2	12,4			1,8	2,0				1,6	1,6	
EZ702B	82	12,5	16,7	19,3	22,1				1,1						1,8

3.4 Accessoires

Pour tous renseignements complémentaires sur les accessoires disponibles, voir les chapitres suivants.

3.4.1 Technique de sécurité

Information

Le servo-variateur est livré en modèle standard, sans technique de sécurité (option SZ6). Si vous souhaitez un servo-variateur avec technique de sécurité intégrée, vous devez commander cette dernière avec le servo-variateur. Les modules de sécurité font partie intégrante des servo-variateurs et ne doivent en aucun cas être modifiés.

Option SZ6 - sans technique de sécurité

Compris dans le modèle standard.

Nº ID 56660

Modèle sans technique de sécurité.

Module de sécurité SR6 - STO via les bornes

N° ID 56661

Accessoires optionnels pour l'utilisation de la fonction de sécurité Safe Torque Off (STO) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via la borne X12.

Module de sécurité SY6 - STO et SS1 via FSoE

N° ID 56662

Accessoires optionnels pour l'utilisation des fonctions de sécurité Safe Torque Off (STO) et Safe Stop 1 (SS1) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via Fail Safe over EtherCAT (FSOE).

Module de sécurité SU6 - STO et SS1 via PROFIsafe

Nº ID 56696

Accessoires optionnels pour l'utilisation des fonctions de sécurité Safe Torque Off (STO) et Safe Stop 1 (SS1) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via PROFINET (PROFIsafe).

3.4.2 Communication

Le servo-variateur est doté de deux interfaces pour la connexion via le bus de terrain sur le dessus de l'appareil ainsi que d'une interface de maintenance Ethernet sur la face avant de l'appareil. Les câbles de connexion sont disponibles séparément.

Système de bus de terrain EtherCAT ou PROFINET

Veuillez indiquer le système de bus de terrain souhaité lors de la commande de l'appareil de base, étant donné que la communication par bus de terrain est déterminée via le micrologiciel.

Câbles EtherCAT

Câble patch Ethernet, CAT5e, jaune. Les modèles suivants sont disponibles : N° ID 49313 : longueur 0,25 m env. N° ID 49314 : longueur 0,5 m env.

Câbles de connexion à l'ordinateur personnel

 $\rm N^{\circ}$ ID 49857 Câble de couplage de l'interface de maintenance X9 à l'ordinateur personnel, CAT5e, bleu, 5 m.

Adaptateur Ethernet USB 2.0

N° ID 49940 Adaptateur pour le couplage d'Ethernet sur un port USB.

3.4.3 Jeu de bornes

Les jeux de bornes adéquats sont nécessaires pour le raccordement de chaque module d'alimentation PS6 et pour chaque servo-variateur SI6.

Jeu de bornes pour le module d'alimentation

(Illustration non contractuelle)

Les modèles suivants sont disponibles :

N° ID 138660

Jeu de bornes pour PS6A24.

N° ID 138661

Jeu de bornes pour PS6A34.

N° ID 5050112

Jeu de bornes pour PS6A44.

Jeu de bornes pour servo-variateur – option SZ6 (sans technique de sécurité), SU6 (STO et SS1 via PROFIsafe) ou SY6 (STO et SS1 via FSoE)

(Illustration non contractuelle)

Les modèles suivants sont disponibles :

Nº ID 138655

Jeu de bornes pour SI6A061Z/U/Y.

Nº ID 138656

Jeu de bornes pour SI6A062Z/U/Y.

Nº ID 138657

Jeu de bornes pour SI6A161Z/U/Y.

Nº ID 138658

Jeu de bornes pour SI6A162Z/U/Y.

Nº ID 138659

Jeu de bornes pour SI6A261Z/U/Y.

Nº ID 138662

Jeu de bornes pour SI6A262Z/U/Y.

Nº ID 138663

Jeu de bornes pour SI6A361Z/U/Y.

Jeu de bornes pour servo-variateur - option SR6 (STO via les bornes)

(Illustration non contractuelle)

Les modèles suivants sont disponibles :

N° ID 138683

Jeu de bornes pour SI6A061R.

N° ID 138684

Jeu de bornes pour SI6A062R.

N° ID 138685

Jeu de bornes pour SI6A161R.

N° ID 138686

Jeu de bornes pour SI6A162R.

N° ID 138687

Jeu de bornes pour SI6A261R.

N° ID 138688

Jeu de bornes pour SI6A262R.

№ ID 138689

Jeu de bornes pour SI6A361R.

3.4.4 Couplage du circuit intermédiaire

Pour l'alimentation électrique des servo-variateurs en réseau, vous avez besoin pour chaque module d'alimentation PS6 et pour chaque servo-variateur SI6 de modules Quick DC-Link adaptés de type DL6B.

Pour le couplage horizontal, vous recevrez les modules arrière DL6B d'exécutions différentes adaptées à la taille du servo-variateur ou du module d'alimentation.

Les attaches de serrage rapides pour la fixation des rails en cuivre ainsi qu'un raccord isolant font partie de la livraison. Les rails en cuivre ne font pas partie de la livraison. Ils doivent présenter une section de 5 x 12 mm. Les embouts isolants sont disponibles séparément.

Quick DC-Link DL6B pour servo-variateurs

Les exécutions suivantes sont disponibles :

DL6B10

N° ID 56655

Module arrière pour servo-variateurs de taille 0 :

SI6A061 et SI6A062

DL6B11

N° ID 56656

Module arrière pour servo-variateurs de taille 1 ou 2 (régulateur mono-

axe):

SI6A161, SI6A162 et SI6A261

DL6B12

N° ID 56663

Module arrière pour servo-variateurs de taille 2 (régulateur double axe) ou

3 :

SI6A262 et SI6A361

Quick DC-Link DL6B pour module d'alimentation

Les modèles suivants sont disponibles :

DL6B20

N° ID 56657

Module arrière pour module d'alimentation de taille 2 :

PS6A24

DL6B21

N° ID 56658

Module arrière pour module d'alimentation de taille 3 :

PS6A34

DL6B22

N° ID 5050114

Module arrière pour module d'alimentation de taille 4 :

PS6A44

Quick DC-Link DL6B Embout isolant

N° ID 56659

Embout isolant pour les extrémités droite et gauche du réseau, 2 pièces.

3.4.5 Résistance de freinage

Outre les modules d'alimentation, STOBER propose des résistances de freinage de construction et de classe de puissance différentes. Lors de votre choix, tenez compte des résistances de freinage minimales admissibles indiquées dans les caractéristiques techniques des modules d'alimentation. Notez qu'en cas d'erreur, par exemple si le chopper de freinage est défectueux, le module d'alimentation doit être débranché.

3.4.5.1 Affectation de la résistance de freinage - PS6

Туре	KWADQU 420×91 avec MWS306L	KWADQU 420×91 avec MWS310L	FZZMQU 400×65	FGFKQU 31005	FGFKQU 31009	FGFKQU 31114
Nº ID	138675	138676	56635	56636	5050115	5050116
PS6A24	(—)	(—)	(X)	Χ	_	_
PS6A34	(—)	(—)	(X)	Χ	_	_
PS6A44	(—)	(—)	(—)	(X)	X	Х

Tab. 47: Affectation de la résistance de freinage au module d'alimentation PS6

X Recommandé

(X) Possible

(—) Raisonnable sous condition

Impossible

3.4.5.2 Résistance plane KWADQU

La résistance de freinage est disponible avec deux jeux d'équerres de montage différents (MWS).

Propriétés

Spécification	KWADQU 420×91 avec MWS306L	KWADQU 420×91 avec MWS310L					
Nº ID	138675	138676					
Туре	Résistance plane a	vec thermocontact					
	(équerre de r	nontage incl.)					
Résistance [Ω]	100 ±	:10 %					
Dérive de température	±10	0 %					
Puissance [W]	60	00					
Constante de temps thermique τ_{th}	6	0					
[s]							
Puissance d'impulsion pour < 1 s	13						
[kW]							
U _{max} [V]	84	18					
Exécution de câble	FI	EP .					
Longueur de câble [mm]	50	00					
Section de conducteur [AWG]	14,	/19					
	(1,9)	mm²)					
Poids sans emballage [g]	2620	2770					
Degré de protection	IP54						
Marquage	cURus, C	CE, UKCA					

Tab. 48: Spécification KWADQU

Spécification	Thermocontact
Puissance de coupure	2 A / 24 V _{CC} (DC11)
Température nominale de fonction-	180 °C ± 5 K
nement $\vartheta_{\scriptscriptstyle NAT}$	
Туре	Contact à ouverture
Exécution de câble	FEP
Longueur de câble [mm]	500
Section de conducteur [AWG]	22

Tab. 49: Spécification thermocontact

Dimensions

Résistance de freinage avec MWS306L

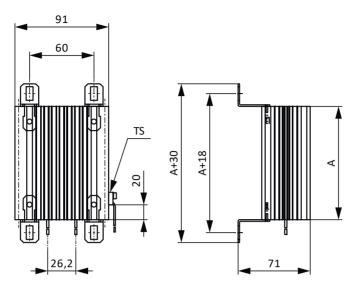


Fig. 9: Croquis coté KWADQU avec MWS306L

Résistance de freinage avec MWS310L

Les équerres de montage peuvent être librement positionnées à la verticale sur toute la longueur de la résistance de freinage.

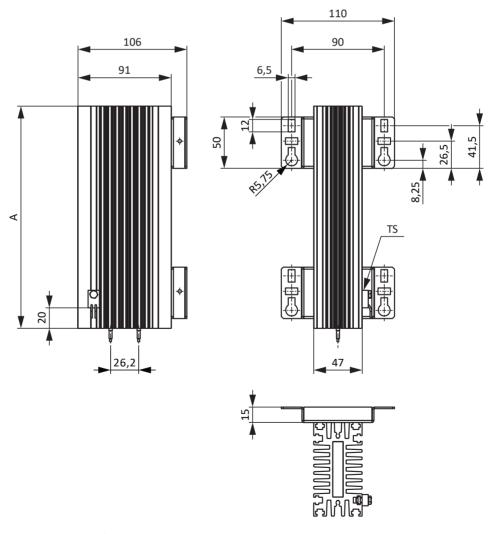


Fig. 10: Croquis coté KWADQU avec MWS310L

Dimension	KWADQU 420×91
Α	420

Tab. 50: Dimensions KWADQU [mm]

3.4.5.3 Résistance tubulaire fixe FZZMQU

Propriétés

Spécification	FZZMQU 400×65
Nº ID	56635
Туре	Résistance tubulaire fixe avec thermocontact
Résistance $[\Omega]$	47 ±10 %
Dérive de température	±10 %
Puissance [W]	1200
Constante de temps thermique τ_{th} [s]	40
Puissance d'impulsion pour < 1 s [kW]	36
U _{max} [V]	848
Poids sans emballage [g]	4200
Degré de protection	IP20
Marquage	cURus, CE, UKCA

Tab. 51: Spécification FZZMQU

Spécification	Thermocontact
Puissance de coupure	2 A / 24 V _{CC} (DC11)
Température nominale de fonctionne-	180 °C ± 5 K
ment ϑ _{NAT}	
Туре	Contact à ouverture
Exécution de câble	FEP
Longueur de câble [mm]	500
Section de conducteur [AWG]	22

Tab. 52: Spécification thermocontact

Dimensions

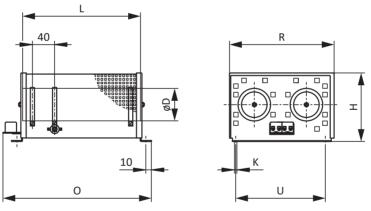


Fig. 11: Croquis coté FZZMQU

Dimension	FZZMQU 400×65
L×D	400 × 65
Н	120
K	6,5 × 12
0	485
R	185
U	150

Tab. 53: Dimensions FZZMQU [mm]

3.4.5.4 Résistance fixe de grille en acier FGFKQU

Propriétés

Spécification	FGFKQU 31005
Nº ID	56636
Туре	Résistance fixe de grille en acier avec thermocontact
Résistance $[\Omega]$	22 ±10 %
Dérive de température	±10 %
Puissance [W]	2500
Constante de temps thermique τ_{th} [s]	30
Puissance d'impulsion pour < 1 s [kW]	50
U _{max} [V]	848
Poids sans emballage [g]	7500
Degré de protection	IP20
Marquage	cURus, CE, UKCA

Tab. 54: Spécification FGFKQU

Spécification	Thermocontact
Puissance de coupure	2 A / 24 V _{cc} (DC11)
Température nominale de fonction-	100 °C ± 5 K
nement ϑ _{NAT}	
Туре	Contact à ouverture
Exécution de câble	FEP
Longueur de câble [mm]	500
Section de conducteur [AWG]	22

Tab. 55: Spécification thermocontact

Dimensions

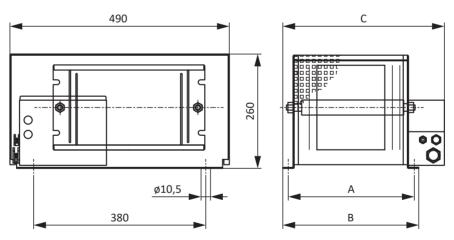


Fig. 12: Croquis coté FGFKQU

Dimension	FGFKQU 31005	FGFKQU 31009	FGFKQU 31114
A	27	0	370
В	295		395
С	355		455

Tab. 56: Dimensions FGFKQU [mm]

3.4.6 Self

Pour les caractéristiques techniques relatives aux selfs de sortie correspondants, consultez les chapitres suivants.

3.4.6.1 Self de réseau TEP

Les selfs de réseau sont utilisés pour atténuer les pics de tension et les pointes de courant et alléger l'injection dans le réseau des modules d'alimentation.

Propriétés

Spécification	TEP4010-2US00
Nº ID	56528
Phases	3
Courant permanent thermiquement admissible	100 A
Courant nominal I _{N,MF}	90 A
Perte absolue P _v	103 W
Inductance	0,14 mH
Plage de tension	3 × 400 V _{CA} , +32 % / -50 % 3 × 480 V _{CA} ,
	+10 % / -58 %
Chute de tension U _k	2 %
Gamme de fréquence	50/60 Hz
Degré de protection	IP00
Température ambiante max. $\vartheta_{amb,max}$	40° C
Classe d'isolation	В
Raccordement	Borne à vis
Mode de raccordement	Flexible avec et sans bague plastique
Section de conducteur max.	6 – 35 mm²
Couple de serrage	2,5 Nm
Longueur de dénudage	17 mm
Montage	Vis
Stipulation	EN 61558-2-20
UL Recognized Component (CAN ; USA)	Oui
Marquage, symbole	cURus, CE,

Tab. 57: Spécification TEP

Dimensions

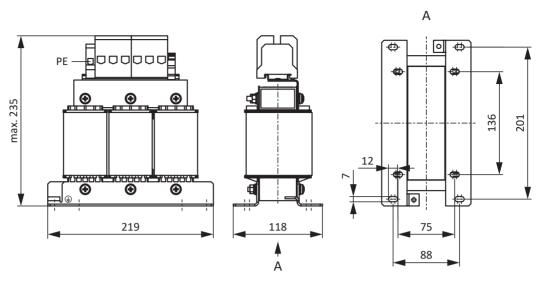


Fig. 13: Croquis coté self de réseau

Dimensions	TEP4010-2US00
Hauteur [mm]	235
Largeur [mm]	219
Profondeur [mm]	118
Écart vertical 1 –	201
trous de fixation [mm]	
Écart vertical 2 –	136
trous de fixation [mm]	
Écart horizontal 1 –	88
trous de fixation [mm]	
Écart horizontal 2 –	75
trous de fixation [mm]	
Trous – Profondeur [mm]	7
Trous – Largeur [mm]	12
Raccord à vis – M M6	
Poids sans emballage [g]	9900

Tab. 58: Dimensions et poids TEP

3.4.6.2 Self de sortie TEP

Les selfs de sortie sont nécessaires pour le raccordement de servo-variateurs de taille 0 à 2 aux moteurs brushless synchrones ou aux moteurs asynchrones à partir d'une longueur de câble > 50 m afin de réduire les impulsions parasites et de ménager le système d'entraînement. Lors du raccordement de moteurs Lean, aucun self de sortie ne doit être utilisé.

Information

Les caractéristiques techniques ci-dessous s'appliquent pour une fréquence du champ tournant de 200 Hz. Vous atteindrez cette fréquence par exemple avec un moteur à quatre paires de pôles et à la vitesse de rotation nominale de 3000 tr/min. Pour les fréquences du champ tournant supérieures, respectez dans tous les cas la réduction de charge indiquée. Par ailleurs, tenez également compte de la dépendance de la cadence.

Propriétés

Spécification	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41	
Nº ID	53188 53189 53190			
Plage de tension		3 × 0 à 480 V _{CA}		
Gamme de fréquence		0 – 200 Hz		
Courant nominal I _{N,MF} à 4 kHz	4 A	17,5 A	38 A	
Courant nominal I _{N,MF} à 8 kHz	3,3 A	15,2 A	30,4 A	
Longueur de câble moteur		100 m		
max. admissible avec				
self de sortie				
Température	40 °C			
ambiante max. $\vartheta_{\scriptscriptstyle{amb,max}}$				
Degré de protection		IP00		
Pertes d'enroulement	11 W	29 W	61 W	
Pertes de fer	25 W	16 W	33 W	
Raccordement	Borne à vis			
Section de conducteur max.	10 mm²			
UL Recognized	Oui			
Component (CAN; USA)				
Marquage	cURus, CE			

Tab. 59: Spécification TEP

Dimensions

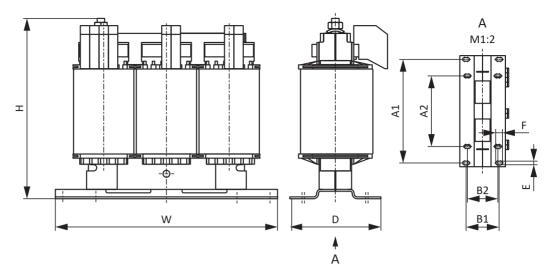


Fig. 14: Croquis coté TEP

Dimension	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41
Hauteur H [mm]	153 max.	153 max.	180 max.
Largeur W [mm]	178	178	219
Profondeur D [mm]	73	88	119
Écart vertical –	166	166	201
Trous de fixation A1 [mm]			
Écart vertical –	113	113	136
Trous de fixation A2 [mm]			
Écart horizontal –	53	68	89
Trous de fixation B1 [mm]			
Écart horizontal –	49	64	76
Trous de fixation B2 [mm]			
Trous percés – Profondeur E [mm]	5,8	5,8	7
Trous percés – Largeur F [mm]	11	11	13
Raccord à vis – M	M5	M5	M6
Poids sans emballage [g]	2900	5900	8800

Tab. 60: Dimensions et poids TEP

3.4.7 Module de pile d'encodeur

Absolute Encoder Support AES

N° ID 55452

Module de pile pour la mise en mémoire tampon de la tension d'alimentation en cas d'utilisation d'encodeurs inductifs EnDat 2.2 numériques avec étage Multiturn sauvegardé par pile, par exemple EBI1135 ou EBI135. Une pile est fournie.

Information

Notez que pour des raisons éventuelles d'encombrement, vous avez besoin d'un câble de rallonge à 15 pôles entre le connecteur femelle et AES pour le raccordement au servo-variateur.

• Entre le connecteur femelle et AES, il est possible d'utiliser un câble de rallonge blindé du commerce avec un connecteur mâle D-sub à 15 pôles et d'une longueur ≤ 1 m.

Pile amovible AES

N° ID 55453

Pile amovible pour le module de pile AES.

3.4.8 Adaptateur HTL vers adaptateur TTL

Adaptateur HTL vers adaptateur TTL HT6

N° ID 56665

Adaptateur pour servo-variateurs des gammes SC6 et SI6 pour la conversion de niveau de signaux HTL aux signaux TTL.

Il sert au raccordement d'un encodeur incrémental HTL différentiel à la borne X4 du servo-variateur.

3.5 Informations supplémentaires

3.5.1 Directives et normes

Les directives et normes européennes suivantes s'appliquent aux servo-variateurs :

- Directive Machines 2006/42/CE
- Directive Basse tension 2014/35/UE
- Directive CEM 2014/30/UE
- EN ISO 13849-1:2015
- EN ISO 13849-2:2012
- EN 61800-3:2018
- EN 61800-5-1:2017
- EN 61800-5-2:2017

3.5.2 Symboles et marquages

Symbole de mise à la terre

Symbole de mise à la terre conformément à CEI 60417, symbole 5019.

Marquage sans plomb RoHS

Marquage conformément à la Directive RoHS 2011-65-UE sur la limitation des substances dangereuses.

Marquage CE

Auto-déclaration du fabricant : le produit satisfait aux directives UE.

Marquage UKCA

Autodéclaration du fabricant : le produit est conforme aux directives du Royaume-Uni.

Marquage UL

Ce produit est certifié pour une utilisation conforme à la norme UL pour les États-Unis et le Canada.

Plusieurs échantillons représentatifs de ce produit ont été testés pour une utilisation UL et sont conformes aux normes applicables.

Marquage UL pour les composants reconnus

Ces composants ou ce matériel sont certifiés UL. Des échantillons représentatifs de ce produit ont fait l'objet d'une évaluation UL et satisfont aux exigences applicables.

3.5.3 Autres documentations

Vous trouverez d'autres documentations relatives au produit à l'adresse http://www.stoeber.de/fr/download

Saisissez le nº ID de la documentation dans le champ <u>Critère de recherche</u>.

Documentation	ID
Manuel servo-variateurs SI6	442729

4 Servo-variateurs SD6

Table des matières

4.1	.1 Aperçu		92
	4.1.1	Caractéristiques	93
	4.1.2	Composants logiciels	95
	4.1.3	Formation pratique	95
4.2	Caracte	éristiques techniques	96
	4.2.1	Désignation de type	96
	4.2.2	Tailles	96
	4.2.3	Caractéristiques techniques générales	97
	4.2.4	Caractéristiques électriques	98
	4.2.5	Temps de cycles	104
	4.2.6	Réduction de charge	105
	4.2.7	Dimensions	107
	4.2.8	Poids	109
	4.2.9	Espaces libres minimaux	110
4.3	Combin	naisons servo-variateurs et moteurs	112
4.4	Access	oires	114
	4.4.1	Technique de sécurité	114
	4.4.2	Communication	115
	4.4.3	Module de borne	116
	4.4.4	Couplage du circuit intermédiaire	118
	4.4.5	Résistance de freinage	119
	4.4.6	Self	125
	4.4.7	Blindage CEM	129
	4.4.8	Boîtier adaptateur pour encodeur	129
	4.4.9	Module de pile d'encodeur	130
	4.4.10	Mémoire de données amovible	130
4.5	Informa	itions supplémentaires	131
	4.5.1	Directives et normes	131
	4.5.2	Symboles et marquages	131
	4.5.3	Autres documentations	131

Servo-variateurs

SD₆

4.1 Aperçu

Performance et flexibilité élevées

Caractéristiques

- Courant nominal de sortie jusqu'à 85 A
- Capacité de surcharge 250 %
- Régulation de moteurs brushless synchrones linéaires et rotatifs et de moteurs asynchrones
- Interfaces encodeur multifonction
- Paramétrage moteur automatique à partir de la plaque signalétique électronique du moteur
- Bus système isochrone (IGB-Motionbus) pour le paramétrage et les applications multiaxes
- Communication via CANopen, EtherCAT ou PROFINET
- Safe Torque Off (STO) en série, technique de sécurité avancée (SS1, SS2, SLS,...) en option
- Entrées et sorties numériques et analogiques en option
- Chopper de freinage, commande de frein et filtre réseau
- Alimentation électrique par injection directe dans le réseau
- Couplage du circuit intermédiaire flexible pour les applications multiaxes
- Unité de commande confortable composée d'un écran graphique et de touches
- Mémoire de données amovible Paramodul pour la mise en service rapide et la maintenance

4.1.1 Caractéristiques

Les servo-variateurs STOBER de la gamme SD6 offrent aux domaines de la technique d'automatisation et de l'ingénierie mécanique un maximum de précision et de productivité en dépit de fonctions toujours plus complexes. De très brefs temps de régulation de changements rapides des valeurs de consigne et de variations brusques de charge expliquent la dynamique élevée des entraînements. Qui plus est, vous pouvez aussi coupler les servo-variateurs dans le cas d'applications multiaxe dans le circuit intermédiaire et améliorer ainsi le bilan énergétique de l'installation dans son ensemble. Le servo-variateur SD6 est disponible en quatre tailles avec un courant nominal de sortie pouvant atteindre 85 A.

Pour les moteurs brushless synchrones STOBER, nous recommandons une utilisation avec l'encodeur En-Dat 2.1/2.2 numérique. Ces systèmes d'encodeur permettent d'obtenir la meilleur qualité de régulation. Le moteur peut être automatiquement paramétré à partir de sa plaque signalétique électronique.

Servo-variateurs SD6

32 Bits Dual-Core

Équipée d'un processeur double-cœur 32 bits, la pièce de commande du servo-variateur SD6 ouvre de toutes nouvelles perspectives en termes de précision des mouvements et de dynamique. La régulation de la position, de la vitesse de rotation et du couple des axes asservis est calculée avec un temps de cycle de 62,5 µs (16 kHz), ce qui assure de très brefs temps de régulation de changements rapides des valeurs de consigne et de variations brusques de charge.

STO entièrement électronique en série

Une interface électronique, inusable est d'ores et déjà disponible pour la fonction de sécurité Safe Torque Off (STO, couple déconnecté en toute sécurité) dans le standard en série. Cette solution technique innovante fonctionne sans devoir effectuer des tests qui nécessitent une interruption de l'exploitation. Dans la pratique, cela est synonyme de disponibilité nettement accrue des machines et des installations. Par ailleurs, la planification et la documentation si souvent fastidieuses des tests ne sont plus nécessaires. Dans les applications multiaxe avec servo-variateurs SD6, la fonction de sécurité STO peut être aisément bouclée.

Les fonctions de sécurité ont été développées en collaboration avec l'entreprise Pilz GmbH & Co. KG.

Option Sécurité avancée

Sont disponibles, outre les fonctions d'arrêt sécurisé Safe Stop 1 (SS1) et Safe Stop 2 (SS2), des fonctions de sécurité additionnelles comme Safely-Limited Speed (SLS), Safe Brake Control (SBC), Safe Brake Test (SBT), Safe Direction (SDI) et Safely-Limited Increment (SLI).

Sécurité certifiée

Grâce à la certification TÜV, le servo-variateur SD6 peut également être utilisé dans des applications exigeantes en termes de technique de sécurité :

- SIL 3, HFT 1 conformément à DIN 61800-5-2
- PL e, catégorie 4 conformément à DIN ISO 13849

Quick DC-Link

Tous les types de servo-variateur SD6 peuvent être équipés du couplage du circuit intermédiaire. Cette technique permet d'utiliser l'énergie générée d'un entraînement par un autre entraînement sous forme d'énergie motrice. L'élément arrière Quick DC-Link a été développé afin de pouvoir installer une connexion de barres fiable et efficace vers le couplage du circuit intermédiaire. Cet accessoire disponible en option relie les circuits intermédiaires de tension continue des différents servo-variateurs à l'aide de barres en cuivre qui peuvent être sollicitées jusqu'à 200 A. Les barres sont montées sans outil par attaches de serrage rapides.

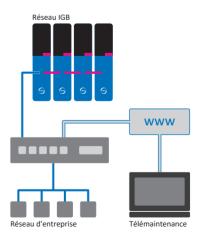
Mémoire de données amovible Paramodul

Une mémoire de données amovible avec carte Micro SD intégrée est disponible pour la mise en service en série rapide par copie et pour la maintenance aisée au cas où l'appareil est remplacé. Elle est l'outil parfait pour l'enregistrement de données projet supplémentaires et de documentions et peut être utilisée sur l'ordinateur personnel pour l'édition directe.

Integrated Bus (IGB)

Les servo-variateurs SD6 standard sont équipés de deux interfaces pour IGB. Celui-ci permet la configuration aisée via Ethernet et l'échange de données isochrone pour les fonctions suivantes :

- Synchronisation multiaxe entre les servo-variateurs (IGB-Motionbus)
- Connexion directe avec la télémaintenance d'un ou de plusieurs servo-variateurs
- Connexion directe entre un ou plusieurs servo-variateurs et un ordinateur personnel


Interface pour IGB

IGB-Motionbus

IGB-Motionbus assure l'échange de données cyclique et isochrone entre plusieurs servo-variateurs SD6 au sein du réseau IGB. Outre la transmission des valeurs Maître pour une exploitation Maître/Esclave, un nombre quelconque de données supplémentaires peut également être transmis.

STOBER Concept de télémaintenance

Le service de télémaintenance STOBER permet d'exécuter tous les processus au moyen du logiciel de mise en service comme lors d'une intervention de maintenance in situ. Ce concept permet aux personnes impliquées d'effectuer une maintenance régulière et sécurisée. Cette manière de procéder garantit que le responsable se trouve sur place devant la machine afin de veiller au bon déroulement et à la sécurité d'autres personnes. Le spécialiste de la télémaintenance peut, pour sa part, être sûr de communiquer avec un interlocuteur responsable sur place qui contrôle la situation sur la machine.

Le service de télémaintenance permet d'exécuter tous les processus comme lors d'une intervention de maintenance in situ.

Gestion du frein

Le servo-variateur SD6 peut commander le frein 24 V_{cc} via une commande de frein intégrée. La gestion du frein offre les deux fonctions suivantes pour le système de freinage :

- Test de frein cyclique
- Rodage du frein

4.1.2 Composants logiciels

Planification et mise en service

Le logiciel de planification et de mise en service génération DriveControlSuite de 6e génération est doté de toutes les fonctions permettant de bénéficier pleinement des avantages des servo-variateurs dans les applications monoaxe et multiaxe. Les assistants dont est doté le programme vous guident pas à pas tout au long du processus de planification et de paramétrage.

Communication ouverte

La communication entre appareils est possible via EtherCAT, CANopen ou PROFINET.

Applications

Pour le contrôle de mouvement décentralisé de machines complexes, il est recommandé d'opter pour une application basée sur l'entraînement.

Chaque fois que des solutions universelles et flexibles s'imposent, le paquet d'applications de STOBER basé sur l'entraînement représente le choix approprié. L'application Drive Based Synchronous offre, avec le jeu d'instructions PLCopen Motion Control, une fonctionnalité de commande de mouvement basée sur l'entraînement pour la mode synchrone, le positionnement, la vitesse et le couple/la force. Ces instructions par défaut ont été regroupées pour différents cas d'application afin de constituer des modes d'exploitation et complétées par des fonctions supplémentaires comme par exemple le chaînage du bloc de déplacement ou la came. Dans le mode d'exploitation Commande, toutes les propriétés des mouvements sont directement prédéfinies par la Commande. Dans le mode d'exploitation Bloc de déplacement, les propriétés des mouvements sont prédéfinies dans l'entraînement de sorte qu'un seul signal de départ suffit pour exécuter le mouvement. Le chaînage permet de définir des mouvements entiers.

Il existe, par ailleurs, l'application CiA 402 qui offre les modes d'exploitation basés sur la commande aussi bien que sur l'entraînement (csp, csv, cst, ip, pp, pv, pt).

4.1.3 Formation pratique

STOBER propose un programme de formation échelonné consacré essentiellement au servo-variateur.

G6 Basic

Contenus de la formation : aperçu du système, montage et mise en service du servo-variateur. Utilisation de modules optionnels. Paramétrage, mise en service et diagnostic via le logiciel de mise en service. Télémaintenance. Notions de base sur l'optimisation du régulateur. Configuration de la chaîne cinématique. Fonctions logicielles intégrées. Applications logicielles. Connexion à une commande supérieure. Notions de base de la technique de sécurité. Exercices pratiques dans le cadre de la formation.

Logiciel utilisé: DriveControlSuite.

G6 Customized

Contenus de la formation : connaissances spécifiques dans le domaine de la technique de régulation, de commande et de sécurité. Disque à came électronique. Exercices pratiques dans le cadre de la formation.

4.2 Caractéristiques techniques

Les caractéristiques techniques relatives aux servo-variateurs figurent dans les chapitres suivants.

4.2.1 Désignation de type

SD 6 A 0	6 T	E X
----------	-----	-----

Tab. 1: Exemple de code pour la désignation de type

Code	Désignation	Modèle
SD	Gamme	
6	Génération	6e génération
A , B	Version	
0 – 3	Taille (TA)	
6 (0 – 9)	Niveau de puissance	Niveau de puissance pour cette taille
T	Module de sécurité	ST6 : STO via les bornes
E		SE6 : fonction de sécurité avancée via les bornes
N	Module de	Vide
E	communication	EC6 : EtherCAT
С		CA6 : CANopen
P		PN6: PROFINET
N	Module de borne	Vide
X		XI6 : Extended
R		RI6 : résolveur
I		IO6 : standard

Tab. 2: Signification de l'exemple de code

4.2.2 Tailles

Туре	Taille
SD6A02	Taille 0
SD6A04	Taille 0
SD6A06	Taille 0
SD6A14	Taille 1
SD6A16	Taille 1
SD6A24	Taille 2
SD6A26	Taille 2
SD6A34	Taille 3
SD6A36	Taille 3
SD6A38	Taille 3

Tab. 3: Types et tailles SD6 disponibles

SD6 dans les tailles 0, 1, 2 et 3

4.2.3 Caractéristiques techniques générales

Les informations ci-dessous s'appliquent à tous les types d'appareil.

Caractéristiques de l'appareil	
Degré de protection de l'appareil	IP20
Degré de protection de l'encombre-	Au minimum IP54
ment	
Classe de protection	Classe de protection I conformément à EN 61140
Antiparasitage	Filtre réseau intégré conformément à EN 61800-3, émission de para-
	sites classe C3
Catégorie de surtension	III conformément à EN 61800-5-1
Marquage	CE, cULus, RoHS

Tab. 4: Caractéristiques de l'appareil

Conditions de transport et de stockage		
Température de stockage/	−20 °C à +70 °C	
transport	Modification maximale : 20 K/h	
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation	
Vibration (transport) conformément	5 Hz ≤ f ≤ 9 Hz : 3,5 mm	
à EN 60068-2-6	9 Hz \leq f \leq 200 Hz : 10 m/s ²	
	$200 \text{ Hz} \le f \le 500 \text{ Hz} : 15 \text{ m/s}^2$	
Hauteur de chute en cas de chute	0,25 m	
libre ¹		
Poids < 100 kg		
conformément à EN 61800-2		
(ou CEI 60721-3-2, classe 2M1)		

Tab. 5: Conditions de transport et de stockage

Conditions de fonctionnement	
Température ambiante en service	0 °C à 45 °C pour les caractéristiques nominales
	45 °C à 55 °C avec réduction –2,5 % / K
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation
Hauteur d'installation	0 m à 1000 m au-dessus du niveau de la mer sans restriction
	1000 m à 2000 m au-dessus du niveau de la mer avec réduction de
	charge de -1,5 % / 100 m
Degré d'encrassement	Degré d'encrassement 2 conformément à EN 50178
Ventilation	Ventilateur intégré
Vibration (fonctionnement) confor-	5 Hz ≤ f ≤ 9 Hz : 0,35 mm
mément à EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 1 m/s²

Tab. 6: Conditions de fonctionnement

Temps de décharge	
Décharge automatique circuit inter-	6 min
médiaire CC	

Tab. 7: Temps de décharge du circuit intermédiaire

¹ S'applique uniquement aux composants dans l'emballage d'origine

4.2.4 Caractéristiques électriques

Vous trouverez les caractéristiques électriques des tailles SD6 disponibles ainsi que les propriétés du chopper de freinage dans les chapitres suivants.

Information

Respectez l'intervalle de temps entre deux connexions au réseau :

• Une réactivation réitérée de la tension de réseau est possible en cas de fonctionnement marche-arrêt cyclique.

Information

Pour un arrêt sûr, la fonction de sécurité STO est disponible comme alternative au fonctionnement marchearrêt continu et cyclique.

Une explication des symboles utilisés figure au chapitre [9.1].

4.2.4.1 Pièce de commande

Caractéristiques électriques	Tous les types	
U _{1CU}	24 V _{CC} , +20 % / –15 %	
I _{1maxCU}	1,5 A	

Tab. 8: Caractéristiques électriques pièce de commande

4.2.4.2 Bloc de puissance : taille 0

Caractéristiques électriques	SD6A02	SD6A04	SD6A06
U_{1PU}	$1 \times 230 \text{ V}_{CA}$, $3 \times 400 \text{ V}_{CA}$,		
	+20 % / - 40 %,	+32 % / -50	%, 50/60 Hz;
	50/60 Hz	3 × 48	30 V _{CA} ,
	+10 % / -58 %, 50/60 Hz		
f _{2PU}	0 – 700 Hz		
U _{2PU}	0 – max. U _{1PU}		
U _{2PU,ZK}	$V2 \times U_{1PU}$		
C_PU	340 μF	135 μF	135 μF
$C_{N,PU}$	1620 μF	540 μF	540 μF

Tab. 9: Caractéristiques électriques SD6, taille 0

Caractéristiques électriques	SD6A02	SD6A04	SD6A06
$f_{PWM,PU}$		4 kHz	
I _{1N,PU}	8,3 A	2,8 A	5,4 A
I _{2N,PU}	4 A	2,3 A	4,5 A
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s		

Tab. 10: Caractéristiques électriques SD6, taille 0 pour cadence 4 kHz

Caractéristiques électriques	SD6A02	SD6A04	SD6A06
f _{PWM,PU}		8 kHz	
I _{1N,PU}	6 A	2,2 A	4 A
I _{2N,PU}	3 A	1,7 A	3,4 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s		

Tab. 11: Caractéristiques électriques SD6, taille 0, pour cadence 8 kHz

Caractéristiques électriques	SD6A02	SD6A04	SD6A06
U _{onCH}	400 – 420 V _{cc}	$0 - 420 V_{cc}$ $780 - 800 V_{cc}$	
U _{offCH}	360 – 380 V _{cc}	360 – 380 V _{cc} 740 – 760 V _{cc}	
R _{2minRB}		100 Ω	
P_{maxRB}	1,8 kW 6,4 kW		
P _{effRB}	1,0 kW	2,9 kW	

Tab. 12: Caractéristiques électriques du chopper de freinage, taille 0

4.2.4.3 Bloc de puissance : taille 1

Caractéristiques électriques	SD6A14	SD6A16	
U _{1PU}	$3 \times 400 \text{ V}_{CA}$, +32 % / -50 %, 50/60 Hz;		
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz		
f _{2PU}	0 – 700 Hz		
U _{2PU}	0 – max. U _{1PU}		
U _{2PU,ZK}	$\sqrt{2} \times U_{1PU}$		
C _{PU}	470 μF	560 μF	
C _{N,PU}	1400 μF	1400 μF	

Tab. 13: Caractéristiques électriques SD6, taille 1

Caractéristiques électriques	SD6A14	SD6A16
f _{PWM,PU}	4 k	кНz
I _{1N,PU}	12 A	19,2 A
I _{2N,PU}	10 A	16 A
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s	

Tab. 14: Caractéristiques électriques SD6, taille 1 pour cadence 4 kHz

Caractéristiques électriques	SD6A14	SD6A16			
f _{PWM,PU}	8 8	Hz			
I _{1N,PU}	9,3 A	15,8 A			
I _{2N,PU}	6 A 10 A				
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s				

Tab. 15: Caractéristiques électriques SD6, taille 1, pour cadence 8 kHz

Caractéristiques électriques	SD6A14	SD6A16				
U _{onCH}	780 – 800 V _{cc}					
U _{offCH}	740 – 760 V _{cc}					
R _{2minRB}	47 Ω					
P_{maxRB}	13,6 kW					
P_{effRB}	6,2 kW					

Tab. 16: Caractéristiques électriques du chopper de freinage, taille 1

4.2.4.4 Bloc de puissance : taille 2

Caractéristiques électriques	SD6A24	SD6A26			
U_{1PU}	3 × 400 V _{CA} , +32 % / -50 %, 50/60 Hz;				
	$3 \times 480 \text{ V}_{CA}$, +10 % / -58 %, 50/60 Hz				
f_{2PU}	0 – 700 Hz				
U _{2PU}	0 – max. U _{1PU}				
U _{2PU,ZK}	$\sqrt{2} \times U_{1PU}$				
C_PU	680 μF 1000 μF				
$C_{N,PU}$	1400 μF	1400 μF			

Tab. 17: Caractéristiques électriques SD6, taille 2

Caractéristiques électriques	SD6A24	SD6A26				
f _{PWM,PU}	4 k	кНz				
I _{1N,PU}	26,4 A	38,4 A				
I _{2N,PU}	22 A 32 A					
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s					

Tab. 18: Caractéristiques électriques SD6, taille 2 pour cadence 4 kHz

Caractéristiques électriques	SD6A24	SD6A26		
f _{PWM,PU}	8 8	Hz		
I _{1N,PU}	24,5 A	32,6 A		
I _{2N,PU}	14 A 20 A			
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s			

Tab. 19: Caractéristiques électriques SD6, taille 2, pour cadence 8 kHz

Caractéristiques électriques	SD6A24 SD6A26					
U _{onCH}	780 – 800 V _{cc}					
U _{offCH}	740 – 760 V _{cc}					
R _{2minRB}	22 Ω					
P_{maxRB}	29,1 kW					
P _{effRB}	13,2 kW					

Tab. 20: Caractéristiques électriques du chopper de freinage, taille 2

4.2.4.5 Bloc de puissance : taille 3

Caractéristiques électriques	SD6A34	SD6A36	SD6A38			
$U_{\mathtt{1PU}}$	3 × 400) V _{CA} , +32 % / -50 %, 50,	/60 Hz;			
	3 × 48	0 V _{CA} , +10 % / -58 %, 50	/60 Hz			
f_{2PU}	0 – 700 Hz					
U _{2PU}	0 – max. U _{1PU}					
U _{2PU,ZK}	$V2 \times U_{1PU}$					
C_{PU}	430 μF	900 μF	900 μF			
$C_{N,PU}$	5100 μF	5100 μF	5100 μF			

Tab. 21: Caractéristiques électriques SD6, taille 3

Caractéristiques électriques	SD6A34 SD6A36		SD6A38			
f _{PWM,PU}		4 kHz				
I _{1N,PU}	45,3 A 76 A 76 A					
I _{2N,PU}	44 A 70 A 85 A ²					
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s					

Tab. 22: Caractéristiques électriques SD6, taille 3, pour cadence 4 kHz

Caractéristiques électriques	SD6A34	SD6A36	SD6A38			
f _{PWM,PU}	8 kHz					
I _{1N,PU}	37 A	62 A	76 A			
I _{2N,PU}	30 A 50 A 60 A					
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s					

Tab. 23: Caractéristiques électriques SD6, taille 3, pour cadence 8 kHz

Caractéristiques électriques	SD6A34	SD6A36	SD6A38			
U _{onCH}	780 – 800 V _{cc}					
U _{offCH}	740 – 760 V _{cc}					
R _{intRB}	30 Ω (résistance CTP ; 100 W ; 1 kW max. pour 1 s ; τ = 40 s)					
R _{2minRB}	15 Ω					
P _{maxRB}	42 kW					
P _{effRB}	19,4 kW					

Tab. 24: Caractéristiques électriques du chopper de freinage, taille 3

4.2.4.6 Couplage du circuit intermédiaire

La capacité de charge des servo-variateurs ne peut être augmentée via un couplage du circuit intermédiaire que si l'alimentation secteur est activée simultanément sur les servo-variateurs.

4.2.4.7 Données de puissance dissipée conformément à EN 61800-9-2

Туре	Courant nominal I _{2N,PU}	Puissance appa- rente	Pertes absolues P _{v,cu} ³		Points de fonctionnement⁴					Classe IE ⁵	Compa- raison ⁶		
	*2N,PU	Tente	• V,CU	(0/25)	(0/50)	(0/100)	(50/25)	(50/50)	(50/100)	(90/50)	(90/100)		
							Perte	es relative	s				
	[A]	[kVA]	[W]					[%]					
SD6A02	4	0,9	10	5,01	5,07	5,68	5,20	5,37	6,30	5,88	7,43	EI2	
SD6A04	2,3	1,6	10	2,98	3,13	3,49	3,02	3,22	3,71	3,36	4,09	EI2	
SD6A06	4,5	3,1	12	1,71	1,86	2,24	1,75	1,97	2,51	2,16	3,04	EI2	
SD6A14	10	6,9	12	1,38	1,54	1,93	1,43	1,64	2,17	1,80	2,57	EI2	
SD6A16	16	11,1	12	0,95	1,12	1,66	0,99	1,23	1,98	1,41	2,52	EI2	
SD6A24	22	15,2	15	0,80	0,97	1,49	0,84	1,06	1,75	1,21	2,19	EI2	
SD6A26	32	22,2	15	0,70	0,87	1,40	0,74	0,97	1,67	1,11	2,10	EI2	
SD6A34	44	30,5	35	0,61	0,76	1,21	0,68	0,90	1,53	1,06	1,96	EI2	
SD6A36	70	48,5	35	0,53	0,69	1,18	0,59	0,82	1,49	0,97	1,89	EI2	
SD6A38	85	58,9	35	0,47	0,64	1,18	0,54	0,78	1,50	0,94	1,94	EI2	
					Pertes absolues P _v								
	[A]	[kVA]	[W]					[W]					[%]
SD6A02	4	0,9	10	45,1	45,6	51,1	46,8	48,3	56,7	52,9	66,9	EI2	51,8
SD6A04	2,3	1,6	10	47,7	50,1	55,8	48,3	51,5	59,3	53,8	65,4	EI2	40,2
SD6A06	4,5	3,1	12	52,9	57,6	69,3	54,4	61,0	77,9	67,1	94,1	EI2	39,6
SD6A14	10	6,9	12	95,3	106,1	133,3	98,6	113,2	149,9	123,9	177,0	EI2	37,1
SD6A16	16	11,1	12	104,9	124,0	184,6	110,3	136,6	219,8	156,0	279,8	EI2	35,8
SD6A24	22	15,2	15	121,5	146,9	226,1	128,1	161,6	266,0	183,7	332,7	EI2	32,9
SD6A26	32	22,2	15	154,7	192,8	311,3	164,7	214,9	370,5	246,9	465,9	EI2	38,6
SD6A34	44	30,5	35	187,5	232,2	368,7	207,7	273,9	466,8	323,0	597,8	EI2	32,1
SD6A36	70	48,5	35	256,6	332,3	570,8	287,9	397,0	721,5	471,0	915,9	EI2	33,9
SD6A38	85	58,9	35	277,8	376,9	692,3	317,4	459,0	886,1	554,6	1143,1	EI2	35,3

Tab. 25: Données de puissance dissipée des servo-variateurs SD6 conformément à la norme EN 61800-9-2

Conditions générales

Les données de perte s'appliquent aux servo-variateurs sans accessoires.

Le calcul de la puissance dissipée repose sur une tension de réseau triphasée avec 400 V_{CA}/50 Hz.

Les données calculées contiennent un supplément de 10 % conformément à EN 61800-9-2.

Les données relatives à la puissance dissipée se réfèrent à une cadence de 4 kHz.

Les pertes absolues lorsque le bloc de puissance est désactivé se réfèrent à une alimentation $24 \, V_{cc}$ de l'électronique de commande.

³ Pertes absolues si le bloc de puissance est désactivé

 $^{^4}$ Points de fonctionnement en cas de cadence du stator moteur relative en % et de courant couple relatif en %

⁵ Classe IE conformément à EN 61800-9-2

⁶ Comparaison des pertes par rapport à la référence sur la base de EI2 dans le point nominal (90, 100)

4.2.4.8 Données de puissance dissipée des accessoires

Si vous commandez le servo-variateur avec les accessoires, les pertes augmentent comme suit :

Туре	Pertes absolues P _v [W]
Module de sécurité SE6	< 4
Module de sécurité ST6	1
Module de borne IO6	< 2
Module de borne XI6	< 5
Module de borne RI6	< 5
Module de communication CA6	1
Module de communication EC6	< 2
Module de communication PN6	< 4

Tab. 26: Pertes absolues des accessoires

Information

Pour le dimensionnement, tenez compte, en outre, de la puissance dissipée absolue de l'encodeur (normalement < 3 W) et du frein.

Les informations relatives à la perte des autres accessoires disponibles en option sont fournies dans les caractéristiques techniques des accessoires correspondants.

4.2.5 Temps de cycles

Référez-vous au tableau suivant pour les temps de cycles possibles.

Туре	Temps de cycles	Paramètres utiles
Application	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain EtherCAT, communication cyclique	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Bus de terrain PROFINET RT, communication cyclique	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150
Entrées et sorties	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans A150 ⁷
Noyau Motion (calcul du mouve- ment)	250 μs	_
Cascade de régulation	62,5 μs, 125 μs	En fonction de B24

Tab. 27: Temps de cycles

4.2.6 Réduction de charge

Lors du dimensionnement du servo-variateur, tenez compte de la réduction du courant nominal de sortie en fonction de la cadence, de la température ambiante et de la hauteur d'installation. Il n'existe aucune restriction si la température ambiante est comprise entre 0 et 45 °C et si la hauteur d'installation est située entre 0 m et 1000 m. Si les valeurs sont différentes, les données décrites ci-dessous s'appliquent.

4.2.6.1 Influence de la cadence

Le changement de la cadence f_{MLI} permet entre autres d'influencer le niveau sonore de l'entraînement. Toutefois, plus la cadence est élevée, plus il y a de pertes. Au moment de la planification, déterminez la cadence maximale qui servira de base au calcul du courant nominal de sortie $I_{2N,PU}$ pour le dimensionnement du servo-variateur.

Туре	I _{2N,PU} 4 kHz	I _{2N,PU} 8 kHz	I _{2N,PU} 16 kHz
SD6A02	4 A	3 A	2 A
SD6A04	2,3 A	1,7 A	1,1 A
SD6A06	4,5 A	3,4 A	2,3 A
SD6A14	10 A	6 A	4 A
SD6A16	16 A	10 A	5,7 A
SD6A24	22 A	14 A	8,1 A
SD6A26	32 A	20 A	12 A
SD6A34	44 A	30 A	18 A
SD6A36	70 A	50 A	31 A
SD6A38	85°A8	60 A	37,8 A

Tab. 28: Courant nominal de sortie I_{2N.PU} en fonction de la cadence

4.2.6.2 Influence de la hauteur d'installation

La réduction de charge en fonction de la hauteur d'installation est calculée comme suit :

- de 0 m à 1000 m : aucune restriction (D_{IA} = 100 %)
- de 1000 m à 2000 m : réduction de charge de −1,5 % / 100 m

Exemple

Le servo-variateur doit être installé à une hauteur de 1500 m au-dessus du niveau de la mer.

Le facteur de réduction D_{IA} est calculé de la manière suivante :

 $D_{IA} = 100 \% - 5 \times 1,5 \% = 92,5 \%$

4.2.6.3 Influence de la température ambiante

La réduction de charge en fonction de la température ambiante est calculée comme suit :

- 0 °C à 45 °C : aucune restriction (D_T = 100 %)
- 45 °C à 55 °C : réduction -2,5 % / K

Exemple

Le servo-variateur doit être exploité à une température de 50 °C.

Le facteur de réduction D_T est calculé de la manière suivante :

 $D_T = 100 \% - 5 \times 2.5 \% = 87.5 \%$

⁸ S'applique à la valeur par défaut de la limite de tension de shuntage : B92 = 80 %.

4.2.6.4 Calcul de la réduction de charge

Procédez comme suit lors du calcul :

- 1. Définissez la cadence maximale (f_{PWM}) appliquée pendant le fonctionnement afin de déterminer le courant nominal $I_{2N,PU}$.
- 2. Déterminez les facteurs de réduction pour la hauteur d'installation et la température ambiante.
- 3. Calculez le courant nominal réduit $I_{2N,PU(red)}$ d'après la formule suivante : $I_{2N,PU(red)} = I_{2N,PU} \times D_T \times D_{IA}$

Exemple

Un servo-variateur de type SD6A06 devrait être exploité à une cadence de 8 kHz à une hauteur d'installation de 1500 m d'altitude et à une température ambiante de 50 $^{\circ}$ C.

Le courant nominal du SD6A06 à 8 kHz est de 3,4 A. Le facteur de réduction D_{τ} est calculé de la manière suivante :

$$D_{T} = 100 \% - 5 \times 2,5 \% = 87,5 \%$$

Le facteur de réduction D_{IA} est calculé de la manière suivante :

$$D_{1A} = 100 \% - 5 \times 1,5 \% = 92,5 \%$$

Le courant de sortie à respecter pour la planification est de :

 $I_{2N,PU(red)} = 3,4 \text{ A} \times 0,875 \times 0,925 = 2,75 \text{ A}$

4.2.7 Dimensions

Pour obtenir tous les dimensions des tailles de SD6 disponibles, consultez les chapitres suivants.

4.2.7.1 Dimensions: tailles 0 à 2

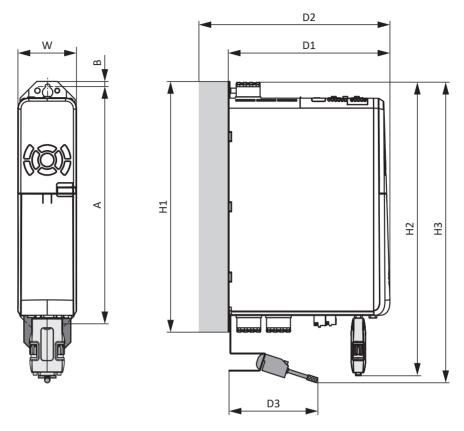


Fig. 1: Croquis coté SD6, tailles 0 à 2

Dimension		Taille 0	TA 1	TA 2	
Servo-variateurs	Largeur	W	70	70	105
	Profondeur	D1	194 284		34
	Profondeur y compris résistance de freinage RB 5000	D2	212 302		02
	Profondeur y compris Quick DC-Link	D2	229 319		19
	Hauteur avec pattes de fixation incl.	H1	300		
	Hauteur y compris AES	H2	367		
	Hauteur y compris blindage CEM	Н3	376 env.		
Blindage CEM avec borne de blindage incl.	Profondeur	D3	111 env.		
Trous de fixation	Écart vertical	А	283+2		
	Écart vertical par rapport au bord supérieur	В	6		

Tab. 29: Dimensions SD6, tailles 0 à 2 [mm]

4.2.7.2 Dimensions: taille 3

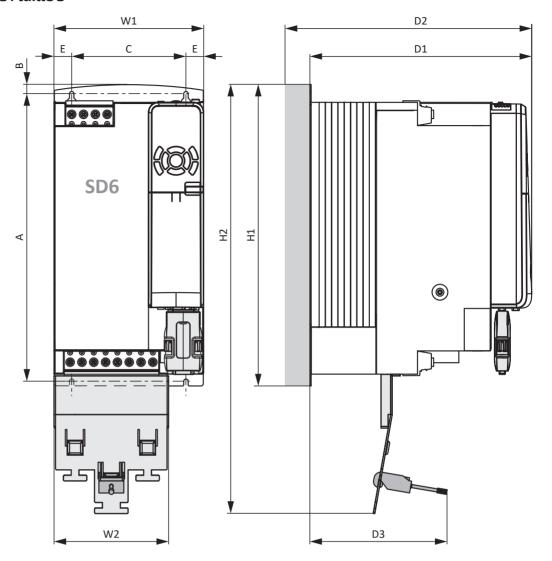


Fig. 2: Croquis coté SD6, taille 3

Dimension			TA 3
Servo-variateurs	Largeur	W1	190
	Profondeur	D1	305
	Profondeur y compris Quick DC-Link	D2	340
	Hauteur avec pattes de fixation incl.	H1	382,5
	Hauteur y compris blindage CEM	H2	540
Blindage CEM avec borne de	Largeur	W2	147
blindage incl. Trous de fixation	Profondeur	D3	174 env.
	Écart vertical	Α	365+2
	Écart vertical par rapport au bord supérieur	В	11,5
	Écart horizontal des trous de fixation du servo-variateur	С	150+0,2/-0,2
	Écart horizontal par rapport au bord latéral du servo-variateur	Е	20

Tab. 30: Dimensions SD6: taille 3 [mm]

4.2.8 **Poids**

Taille	Poids sans emballage [g]	Poids avec emballage [g]
Taille 0	2530	3520
TA 1	3700	5470
TA 2	5050	6490
TA 3	13300	14800

Tab. 31: Poids SD6 [g]

Si vous commandez le servo-variateur avec les accessoires, le poids augmente comme suit.

Accessoires	Poids sans emballage [g]
Module de communica-	50
tion	
Module de borne	135
Module de sécurité	110

Tab. 32: Poids des accessoires [g]

4.2.9 Espaces libres minimaux

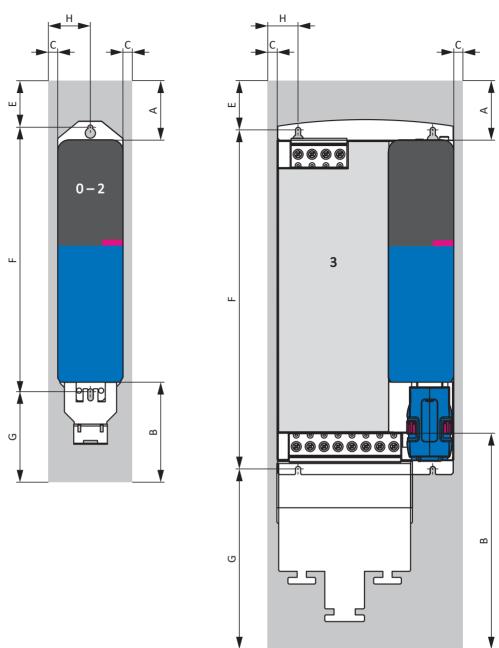


Fig. 3: Espaces libres minimaux

Les dimensions indiquées se rapportent aux bords extérieurs du servo-variateur.

Espace libre minimal	A (vers le haut)	B (vers le bas)	C (latéral) ⁹
Taille 0 – Taille 2	100	100	5
avec blindage CEM	100	120	5
Taille 3	100	100	5
avec blindage CEM	100	220	5

Tab. 33: Espaces libres minimaux [mm]

Dimension	E	F	G	н
Taille 0, taille 1	86	283+2	89 env.	40
avec blindage CEM	86	283+2	109 env.	40
TA 2	86	283+2	89 env.	57,5
avec blindage	86	283+2	109 env.	57,5
TA 3	89	365+2	59,5 env.	25
avec blindage CEM	89	365+2	179,5 env.	25

Tab. 34: Dimensions [mm]

Self et filtre

Évitez une installation sous les servo-variateurs ou sous les modules d'alimentation. Dans le cas d'un montage dans une armoire électrique, nous recommandons d'observer une distance de 100 mm env. par rapport aux composants adjacents. Cette distance garantit la dissipation de chaleur dans les selfs et les filtres.

Résistances de freinage

Évitez une installation sous les servo-variateurs ou sous les modules d'alimentation. Pour permettre une évacuation libre de l'air chauffé, il faut observer une distance minimale de 200 mm env. par rapport aux composants ou parois adjacents et de 300 mm env. par rapports aux composants ou plafonds situés au-dessus.

⁹ Montage sans module Quick DC-Link

4.3 Combinaisons servo-variateurs et moteurs

Une explication des symboles utilisés figure au chapitre [> 9.1].

Moteur brushless synchrone EZ ($n_N = 2000 \text{ tr/min}$) – SD6

						SD6A02	SD6A04	SD6A06	SD6A14	SD6A16	SD6A24	SD6A26	SD6A34	SD6A36	SD6A38
										$I_{2N,PU}[A]$ $(f_{MLI,PU} = 8 \text{ kHz})$					
	K _{EM} [V/1000 tr/min]	M _N [Nm]	Ι _Ν [A]	M ₀ [Nm]	I ₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
Refroidisse	ement par conv	ection	IC 410	0						I _{2N,P}	_U / I ₀				
EZ805U	142	43,7	25,9	66,1	37,9									1,3	1,6
Ventilation	/entilation forcée IC 416									I _{2N,P}	_U / I ₀				
EZ805B	142	77,2	45,2	94	53,9										1,1

Moteur brushless synchrone EZ (n., = 3000 tr/min) - SD6

Moteur br	ushless synchro	ne EZ	$(n_N = 3)$	8000 tr	/min)	– SD6									
						SD6A02	SD6A04	SD6A06	SD6A14	SD6A16	SD6A24	SD6A26	SD6A34	SD6A36	SD6A38
											_⊍ [A] = 8 kHz)				
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	Ι ₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
Refroidiss	ement par conv	ection	IC 410	0						I _{2N,P}	₀ / I ₀				
EZ301U	40	0,93	1,99	0,95	2,02	1,5		1,7							
EZ302U	86	1,59	1,6	1,68	1,67	1,8	1,0	2,0							
EZ303U	109	2,07	1,63	2,19	1,71	1,8	1,0	2,0							
EZ401U	96	2,8	2,74	3	2,88	1,0		1,2							
EZ402U	94	4,7	4,4	5,2	4,8				1,3						
EZ404U	116	6,9	5,8	8,6	6,6					1,5					
EZ501U	97	4,3	3,74	4,7	4				1,5						
EZ502U	121	7,4	5,46	8	5,76				1,0	1,7					
EZ503U	119	9,7	6,9	11,1	7,67					1,3	1,8				
EZ505U	141	13,5	8,8	16	10					1,0	1,4	2,0			
EZ701U	95	7,4	7,2	8,3	8					1,3	1,8				
EZ702U	133	12	8,2	14,4	9,6					1,0	1,5				
EZ703U	122	16,5	11,4	20,8	14						1,0	1,4			
EZ705U	140	21,3	14,2	30,2	19,5							1,0	1,5		
EZ802U	136	22,3	13,9	37,1	22,3								1,3		
EZ803U	131	26,6	17,7	48,2	31,1									1,6	1,9
Ventilatio	n forcée IC 416									I _{2N P}	_{ou} / I _o				
EZ401B	96	3,4	3,4	3,7	3,6				1,7						
EZ402B	94	5,9	5,5	6,3	5,8				1,0	1,7					
EZ404B	116	10,2	8,2	11,2	8,7					1,1	1,6				
EZ501B	97	5,4	4,7	5,8	5				1,2	2,0					
EZ502B	121	10,3	7,8	11,2	8,16					1,2	1,7				
EZ503B	119	14,4	10,9	15,9	11,8						1,2	1,7			
EZ505B	141	20,2	13,7	23,4	14,7						1,0	1,4			
EZ701B	95	9,7	9,5	10,5	10					1,0	1,4	2,0			
EZ702B	133	16,6	11,8	19,3	12,9						1,1	1,6			
EZ703B	122	24	18,2	28	20							1,0	1,5		
EZ705B	140	33,8	22,9	41,8	26,5								1,1	1,9	
EZ802B	136	34,3	26,5	47,9	28,9								1,0	1,7	
EZ803B	131	49	35,9	66,7	42,3									1,2	1,4

Moteur brushless synchrone EZ (n_N = 4500 tr/min) – SD6

Refroidisseme EZ505U EZ703U EZ705U	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N							1	FA 3				
Refroidisseme EZ505U EZ703U EZ705U			I _N	D 4						I _{2N,PL} (f _{MLI,PU} =	[A] 8 kHz)				
EZ505U EZ703U EZ705U			[A]	M ₀ [Nm]	Ι ₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
EZ505U EZ703U EZ705U	nent par conve	ection	IC 410)						I _{2N,Pl}	, / I ₀				
EZ705U	103	9,5	8,94	15,3	13,4						1,0	1,5			
	99	12,1	11,5	20	17,8							1,1	1,7		
	106	16,4	14,8	30	25,2								1,2	2,0	
EZ802U	90	10,5	11,2	34,5	33,3									1,5	1,8
Ventilation fo	orcée IC 416									l _{2N,Pl}	, / I ₀				
EZ505B	103	16,4	16,4	22	19,4							1,0	1,5		
EZ703B	99	19,8	20,3	27,2	24,2								1,2		
EZ705B	106	27,7	25,4	39,4	32,8									1,5	1,8
EZ802B	90	30,6	30,5	47,4	45,1									1,1	1,3
Moteur brush	Moteur brushless synchrone EZ (n _N = 6000 tr/min) – SD6														

EZ/03B	100	21,1	25,4	39,4	32,8									1,5	1,0
EZ802B	90	30,6	30,5	47,4	45,1									1,1	1,3
Moteur hr	ushless synchro	ne F7	(n = 6	soon tr	/min)	– SD6									
Wioteur Di	usiness syncine	, IIC LZ	(II _N – C	,000 (1)	,,	,			1				1		
						SD6A02	SD6A04	SD6A06	SD6A14	SD6A16		SD6A26	SD6A34	SD6A36	SD6A38
											∪ [A] = 8 kHz)				
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	Ι ₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
Refroidiss	ement par conv	ection	IC 410	0						l _{2N,P}	_u / I ₀				
EZ202U	40	0,44	1,07	0,48	1,12		1,5								
EZ203U	40	0,64	1,53	0,73	1,65	1,8	1,0	2,1							
EZ301U	40	0,89	1,93	0,95	2,02	1,5		1,7							
EZ302U	42	1,5	3,18	1,68	3,48				1,7						
EZ303U	55	1,96	3,17	2,25	3,55				1,7						
EZ401U	47	2,3	4,56	2,8	5,36				1,1	1,9					
EZ402U	60	3,5	5,65	4,9	7,43					1,3	1,9				
EZ404U	78	5,8	7,18	8,4	9,78					1,0	1,4	2,0			
EZ501U	68	3,4	4,77	4,4	5,8				1,0	1,7	2,4				
EZ502U	72	5,2	7,35	7,8	9,8					1,0	1,4	2,0			
EZ503U	84	6,2	7,64	10,6	11,6						1,2	1,7			
EZ701U	76	5,2	6,68	7,9	9,38					1,1	1,5				
EZ702U	82	7,2	8,96	14,3	16,5							1,2	1,8		
Ventilatio	n forcée IC 416									l _{2N,P}	_U / I ₀				
EZ401B	47	2,9	5,62	3,5	6,83					1,5	2,0				
EZ402B	60	5,1	7,88	6,4	9,34					1,1	1,5				
EZ404B	78	8	9,98	10,5	12						1,2	1,7			
EZ501B	68	4,5	6,7	5,7	7,5					1,3	1,9				
EZ502B	72	8,2	11,4	10,5	13,4						1,0	1,5			
EZ503B	84	10,4	13,5	14,8	15,9							1,3	1,9		
EZ701B	76	7,5	10,6	10,2	12,4						1,1	1,6			
EZ702B	82	12,5	16,7	19,3	22,1								1,4		

4.4 Accessoires

Pour tous renseignements complémentaires sur les accessoires disponibles, voir les chapitres suivants.

4.4.1 Technique de sécurité

Information

Le servo-variateur est livré en modèle standard avec le module de sécurité ST6. Si vous souhaitez un servovariateur avec technique de sécurité avancée, vous devez commander cette dernière avec le servovariateur. Les modules de sécurité font partie intégrante des servo-variateurs et ne doivent en aucun cas être modifiés.

Module de sécurité ST6 - STO via les bornes

Compris dans le modèle standard.

Nº ID 56431

Accessoires pour l'utilisation de la fonction de sécurité Safe Torque Off (STO) dans des applications de sécurité (PL e, SIL 3) conformément à EN ISO 13849-1 et EN 61800-5-2. Connexion au circuit de sécurité superposé via la borne X12.

Module de sécurité SE6 - fonction de sécurité avancée via les bornes

Nº ID 56432

Accessoires optionnels pour l'utilisation dans les applications de sécurité jusqu'à PL e, SIL 3 conformément à EN ISO 13849-1 et EN 61800-5-2. Outre la fonction de sécurité de base Safe Torque Off (STO), SE6 offre d'autres fonctions de sécurité spécifiées dans la norme EN 61800-5-2. Il s'agit entre autres, en plus des fonctions d'arrêt sécurisé Safe Stop 1 (SS1) et Safe Stop 2 (SS2), des fonctions Safely-Limited Speed (SLS), Safe Brake Control (SBC), Safe Direction (SDI), et Safely-Limited Increment (SLI). Les fonctions de sécurité normatives sont complétées par des fonctions supplémentaires orientées vers la pratique, telles que Safe Brake Test (SBT). Connexion au circuit de sécurité prioritaire via les bornes X14 et X15.

Câble adaptateur X50 (option SE6)

Nº ID 56434

Câble de raccordement pour l'interface encodeur X50 du module de sécurité SE6 avec les extrémités de câble ouvertes. 1,5 m.

4.4.2 Communication

Le servo-variateur SD6 est doté par défaut de deux interfaces pour la communication IGB situées sur le dessus de l'appareil.

Le module de communication qui permet de relier le servo-variateur au système de bus de terrain est monté dans l'emplacement situé sur le dessus de l'appareil.

Les modules de communication suivants sont disponibles :

- EC6 pour la connexion EtherCAT
- CA6 pour la connexion CANopen
- PN6 pour la connexion PROFINET

Câble de connexion IGB

Câble pour le couplage de l'interface X3A ou X3B pour IGB, CAT5e, magenta.

Les modèles suivants sont disponibles :

Nº ID 56489 : 0,4 m. Nº ID 56490 : 2 m.

Câbles de connexion à l'ordinateur personnel

Nº ID 49857

Câble pour le couplage de l'interface X3A ou X3B à l'ordinateur personnel, CAT5e, bleu, 5 m.

Adaptateur Ethernet USB 2.0

N° ID 49940

Adaptateur pour le couplage d'Ethernet sur un port USB.

Module de communication EC6

Nº ID 138425

Module de communication pour la connexion EtherCAT.

Câbles EtherCAT

Câble patch Ethernet, CAT5e, jaune. Les modèles suivants sont disponibles :

N° ID 49313 : longueur 0,25 m env. N° ID 49314 : longueur 0,5 m env.

Module de communication CA6

Nº ID 138427

Module de communication pour la connexion CANopen.

Module de communication PN6

Nº ID 138426

Module de communication pour la connexion PROFINET.

4.4.3 Module de borne

Module de borne XI6

Nº ID 138421

Module de borne pour le raccordement de signaux analogiques et numériques ainsi que d'encodeurs.

Entrées et sorties prises en charge :

- 13 entrées numériques (24 V_{cc})
- 10 sorties numériques (24 V_{cc})
- 3 entrées analogiques (±10 V_{cc}, 1 x 0 20 mA, 16 bits)
- 2 sorties analogiques (±10 V_{CC}, 12 bits)

Encodeurs / interfaces supportés :

- Encodeur SSI (simulation et analyse)
- Encodeur incrémental TTL différentiel (simulation et analyse)
- Encodeur incrémental HTL single-ended (simulation et analyse)
- Interface impulsion/direction TTL différentielle (simulation et analyse)
- Interface impulsion/direction HTL single-ended (simulation et analyse)

Module de borne RI6

Nº ID 138422

Module de borne pour le raccordement de signaux analogiques et numériques ainsi que d'encodeurs.

Entrées et sorties prises en charge :

- 5 entrées numériques (24 V_{cc})
- 2 sorties numériques (24 V_{cc})
- 2 entrées analogiques (±10 V_{cc}, 1 x 0 20 mA, 16 bits)
- 2 sorties analogiques (±10 V_{cc}, ±20 mA, 12 bits)

Encodeurs / interfaces supportés :

- Résolveur (analyse)
- Encodeur EnDat 2.1 sin/cos (analyse)
- Encodeur EnDat 2.1/2.2 numérique (analyse)
- Encodeur sin/cos (analyse)
- Encodeur SSI (simulation et analyse)
- Encodeur incrémental TTL différentiel (simulation et analyse)
- Encodeur incrémental TTL single-ended (analyse)
- Encodeur incrémental HTL single-ended (simulation et analyse)
- Interface impulsion/direction TTL différentielle (simulation et analyse)
- Interface impulsion/direction TTL single-ended (analyse)
- Interface impulsion/direction HTL single-ended (simulation et analyse)

Information

Pour le raccordement de câbles Sin/Cos EnDat 2.1 STOBER à un connecteur mâle D-sub à 15 pôles avec sonde thermique du moteur intégrée, utilisez l'adaptateur d'interface AP6A02 (n° ID 56523) disponible séparément pour le guidage vers l'extérieur des fils de la sonde de température.

Module de borne IO6

№ ID 138420

Module de borne pour le raccordement de signaux analogiques et numériques ainsi que d'encodeurs.

Entrées et sorties prises en charge :

- 5 entrées numériques (24 V_{cc})
- 2 sorties numériques (24 V_{cc})
- 2 entrées analogiques (±10 V_{cc}, 1 x 0 20 mA, 12 bits)
- 2 sorties analogiques (±10 V_{cc}, ±20 mA, 12 bits)

Encodeurs / interfaces supportés :

- Encodeur incrémental HTL single-ended (simulation et analyse)
- Interface impulsion/direction HTL single-ended (simulation et analyse)

4.4.4 Couplage du circuit intermédiaire

Si vous souhaitez coupler le servo-variateur SD6 au sein du bus CC, vous avez besoin des modules Quick DC-Link de type DL6A.

Pour le couplage horizontal, vous recevrez les modules arrière DL6A dans différents modèles adaptés à la taille du servo-variateur.

Les attaches de serrage rapides pour la fixation des rails en cuivre, ainsi qu'un raccord isolant, font partie de la livraison. Les rails en cuivre ne font pas partie de la livraison. Ils doivent présenter une section de 5 x 12 mm. Les embouts isolants sont disponibles séparément.

Quick DC-Link DL6A pour servo-variateurs

Les modèles suivants sont disponibles :

DL6A0

Nº ID 56440

Module arrière pour servo-variateurs de taille 0.

DL6A1

Nº ID 56441

Module arrière pour servo-variateurs de taille 1.

DL6A2

Nº ID 56442

Module arrière pour servo-variateurs de taille 2.

DL6A3

Nº ID 56443

Module arrière pour servo-variateurs de taille 3.

Quick DC-Link DL6A Embout isolant

Nº ID 56494

Embout isolant pour les extrémités droite et gauche du réseau, 2 pièces.

4.4.5 Résistance de freinage

Outre les servo-variateurs, STOBER propose les résistances de freinage décrites ci-dessous, de construction et de classe de puissance différentes. Au moment de votre choix, tenez compte des résistances de freinage minimales admissibles indiquées dans les caractéristiques techniques des différents types de servo-variateur.

4.4.5.1 Résistance tubulaire fixe FZMU, FZZMU

Туре	F2	ZMU 400×6	55	FZZMU 400×65			
Nº ID	49010	55445	55446	53895	55447	55448	
SD6A02	Х	_	_	_	_	_	
SD6A04	X	_	_	_	_	_	
SD6A06	X	_	_	_	_	_	
SD6A14	(X)	_	_	Χ	_	_	
SD6A16	(X)	_	_	Χ	_	_	
SD6A24	(—)	Χ	_	(X)	Χ	_	
SD6A26	(—)	Χ	_	(X)	Χ	_	
SD6A34	(—)	(X)	Χ	(—)	(X)	Χ	
SD6A36	(—)	(X)	X	(—)	(X)	Х	
SD6A38	(—)	(X)	Χ	(—)	(X)	Х	

Tab. 35: Affectation résistance de freinage FZMU, FZZMU – Servo-variateur SD6

X Recommandé

(X) Possible

(—) Raisonnable sous condition

Impossible

Propriétés

Spécification	F:	ZMU 400×6	55	FZ	ZMU 400×	65	
Nº ID	49010	55445	55446	53895	55447	55448	
Туре	Résista	ance tubula	ire fixe	Résistance tubulaire fixe			
Résistance [Ω]	100 ±10 %	22 ±10 %	15 ±10 %	47 ±10 %	22 ±10 %	15 ±10 %	
Dérive de température		±10 %			±10 %		
Puissance [W]		600		1200			
Const. temps therm. τ_{th} [s]		40		40			
Puissance d'impulsion pour < 1 s [kW]		18			36		
U _{max} [V]		848			848		
Poids sans emballage [g]		2200			4170		
Degré de protection		IP20			IP20		
Marquage	cU	Rus, CE, Uk	CA	cURus, CE, UKCA			

Tab. 36: Spécification FZMU, FZZMU

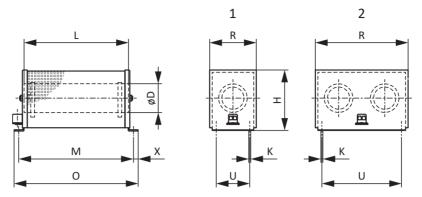


Fig. 4: Croquis coté FZMU (1), FZZMU (2)

Dimension	F.	ZMU 400×6	55	FZ	ZMU 400×	65	
Nº ID	49010	55445	55446	53895	55447	55448	
LxD		400 × 65		400 × 65			
Н		120		120			
K		6,5 × 12		6,5 × 12			
M		430		426			
0		485		485			
R		92		185			
U		64		150			
Χ		10		10			

Tab. 37: Dimensions FZMU, FZZMU [mm]

4.4.5.2 Résistance plane GVADU, GBADU

Туре	GVADU 210×20	GBADU 265×30	GBADU 405×30	GBADU 335×30	GBADU 265×30
Nº ID	55441	55442	55499	55443	55444
SD6A02	Χ	Χ	Χ	_	_
SD6A04	Χ	Χ	Χ	_	_
SD6A06	Χ	Χ	Χ	_	_
SD6A14	(X)	(X)	(X)	Χ	_
SD6A16	(X)	(X)	(X)	Χ	_
SD6A24	(—)	(—)	(—)	(X)	X
SD6A26	(—)	(—)	(—)	(X)	Х
SD6A34	(—)	(—)	(—)	(—)	(X)
SD6A36	(—)	(—)	(—)	(—)	(X)
SD6A38	(—)	(—)	(—)	(—)	(X)

Tab. 38: Affectation résistance de freinage GVADU, GBADU – Servo-variateur SD6

X Recommandé

(X) Possible

(—) Raisonnable sous condition

Impossible

Propriétés

Spécification	GVADU 210×20	GBADU 265×30	GBADU 405×30	GBADU 335×30	GBADU 265×30
Nº ID	55441	55442	55499	55443	55444
Туре		R	ésistance plan	e	
Résistance [Ω]	100 ±10 %	100 ±10 %	100 ±10 %	47 ±10 %	22 ±10 %
Dérive de température	±10 %	±10 %	±10 %	±10 %	±10 %
Puissance [W]	150	300	500	400	300
Const. temps therm. τ_{th} [s]	60	60	60	60	60
Puissance d'impulsion pour < 1 s	3,3	6,6	11	8,8	6,6
[kW]					
U _{max} [V]	848	848	848	848	848
Exécution de câble	Radox	FEP	FEP	FEP	FEP
Longueur de câble [mm]	500	1500	500	1500	1500
Section de conducteur [AWG]	18/19	14/19	14/19	14/19	14/19
	(0,82 mm ²)	(1,9 mm²)	(1,9 mm²)	(1,9 mm ²)	(1,9 mm²)
Poids sans emballage [g]	300	930	1410	1200	930
Degré de protection	IP54	IP54	IP54	IP54	IP54
Marquage		cURus, CE, UKCA			

Tab. 39: Spécification GVADU, GBADU

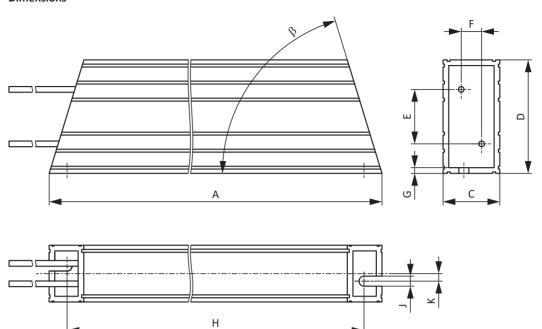


Fig. 5: Croquis coté GVADU, GBADU

Dimension	GVADU 210×20	GBADU 265×30	GBADU 405×30	GBADU 335×30	GBADU 265×30
Nº ID	55441	55442	55499	55443	55444
A	210	265	405	335	265
Н	192	246	386	316	246
С	20	30	30	30	30
D	40	60	60	60	60
E	18,2	28,8	28,8	28,8	28,8
F	6,2	10,8	10,8	10,8	10,8
G	2	3	3	3	3
K	2,5	4	4	4	4
J	4,3	5,3	5,3	5,3	5,3
β	65°	73°	73°	73°	73°

Tab. 40: Dimensions GVADU, GBADU [mm]

4.4.5.3 Résistance fixe de grille en acier FGFKU

Туре	FGFKU 3100502	FGFKU 3100502	FGFKU 3111202	FGFKU 3121602
Nº ID	55449	55450	55451	53897
SD6A24	Х	_	_	_
SD6A26	X	_	_	_
SD6A34	(X)	Х	X	Х
SD6A36	(X)	Х	X	X
SD6A38	(X)	X	X	Х

Tab. 41: Affectation résistance de freinage FGFKU – Servo-variateur SD6

X Recommandé

(X) Possible

Impossible

Propriétés

Spécification	FGFKU 3100502	FGFKU 3100502	FGFKU 3111202	FGFKU 3121602
Nº ID	55449	55450	55451	53897
Туре		Résistance fixe d	de grille en acier	
Résistance [Ω]	22 ±10 %	15 ±10 %	15 ±10 %	15 ±10 %
Dérive de température	±10 %	±10 %	±10 %	±10 %
Puissance [W]	2500	2500	6000	8000
Const. temps therm. τ_{th} [s]	30	30	20	20
Puissance d'impulsion pour < 1 s [kW]	50	50	120	160
U _{max} [V]	848	848	848	848
Poids sans emballage [g]	7500	7500	12000	18000
Degré de protection	IP20	IP20	IP20	IP20
Marquage	cURus, CE, UKCA			

Tab. 42: Spécification FGFKU

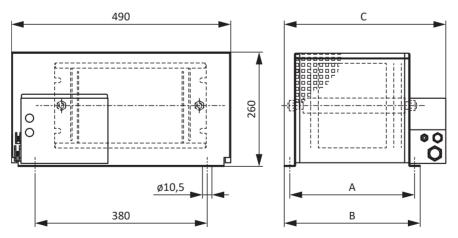


Fig. 6: Croquis coté FGFKU

Dimension	FGFKU	FGFKU	FGFKU	FGFKU
	3100502	3100502	3111202	3121602
Nº ID	55449	55450	55451	53897
A	270	270	370	570
В	295	295	395	595
С	355	355	455	655

Tab. 43: Dimensions FGFKU [mm]

4.4.5.4 Résistance de freinage arrièreRB 5000

Туре	RB 5022	RB 5047	RB 5100
Nº ID	45618	44966	44965
SD6A02	_	_	X
SD6A04	_	_	Χ
SD6A06	_	_	X
SD6A14	_	X	(X)
SD6A16	_	Χ	(X)
SD6A24	X	_	_
SD6A26	X	_	_
SD6A34	_	_	_
SD6A36	_	_	_
SD6A38	_	_	_

Tab. 44: Affectation résistance de freinage RB 5000 – Servo-variateur SD6

X Recommandé

(X) Possible

Impossible

Propriétés

Spécification	RB 5022	RB 5047	RB 5100
Nº ID	45618	44966	44965
Résistance [Ω]	22 ±10 %	47 ±10 %	100 ±10 %
Dérive de température	±10 %	±10 %	±10 %
Puissance [W]	100	60	60
Const. temps therm. τ_{th} [s]	8	8	8
Puissance d'impulsion pour < 1 s [kW]	1,5	1,0	1,0
U _{max} [V]	800	800	800
Poids sans emballage [g]	640	460	440
Exécution de câble	Radox	Radox	Radox
Longueur de câble [mm]	250	250	250
Section de conducteur [AWG]	18/19	18/19	18/19
	(0,82 mm²)	(0,82 mm²)	(0,82 mm²)
Couple max. goujon fileté M5 [Nm]	5	5	5
Degré de protection	IP40	IP40	IP40
Marquage	cURus, CE, UKCA	cURus, CE, UKCA	cURus, CE, UKCA

Tab. 45: Spécification RB 5000

Dimension	RB 5022	RB 5047	RB 5100
Nº ID	45618	44966	44965
Hauteur	300	300	300
Largeur	94	62	62
Profondeur	18	18	18
Le plan de perçage correspond à la taille	Taille 2	TA 1	Tailles 0 et 1

Tab. 46: Dimensions RB 5000 [mm]

4.4.6 Self

Pour les caractéristiques techniques relatives aux selfs de sortie correspondants, consultez les chapitres suivants.

4.4.6.1 Self de réseau TEP

Pour chaque servo-variateur SD6 de taille 3, il vous faut un self de réseau. Ce dernier atténue les pics de tension et les pointes de courant et allège l'injection dans le réseau des servo-variateurs.

Propriétés

Spécification	TEP4010-2US00
Nº ID	56528
Phases	3
Courant permanent thermiquement admissible	100 A
Courant nominal I _{N,MF}	90 A
Perte absolue P _v	103 W
Inductance	0,14 mH
Plage de tension	3 × 400 V _{CA} , +32 % / -50 % 3 × 480 V _{CA} ,
	+10 % / -58 %
Chute de tension U _k	2 %
Gamme de fréquence	50/60 Hz
Degré de protection	IP00
Température ambiante max. $\vartheta_{amb,max}$	40° C
Classe d'isolation	В
Raccordement	Borne à vis
Mode de raccordement	Flexible avec et sans bague plastique
Section de conducteur max.	6 – 35 mm²
Couple de serrage	2,5 Nm
Longueur de dénudage	17 mm
Montage	Vis
Stipulation	EN 61558-2-20
UL Recognized Component (CAN ; USA)	Oui
Marquage, symbole	cURus, CE,

Tab. 47: Spécification TEP

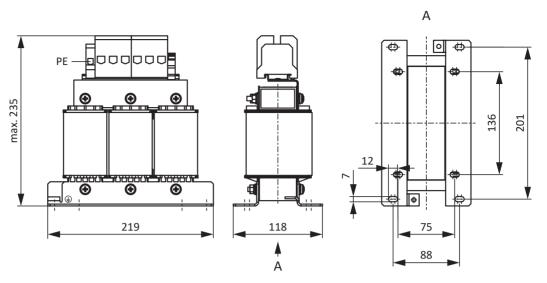


Fig. 7: Croquis coté self de réseau

Dimensions	TEP4010-2US00
Hauteur [mm]	235
Largeur [mm]	219
Profondeur [mm]	118
Écart vertical 1 –	201
trous de fixation [mm]	
Écart vertical 2 –	136
trous de fixation [mm]	
Écart horizontal 1 –	88
trous de fixation [mm]	
Écart horizontal 2 –	75
trous de fixation [mm]	
Trous – Profondeur [mm]	7
Trous – Largeur [mm]	12
Raccord à vis – M	M6
Poids sans emballage [g]	9900

Tab. 48: Dimensions et poids TEP

4.4.6.2 Self de sortie TEP

Des selfs de sortie sont nécessaires pour le raccordement de servo-variateurs des tailles 0 à 2 à partir d'une longueur de câble > 50 m, afin de réduire les impulsions parasites et de ménager le système d'entraînement.

Information

Les caractéristiques techniques ci-dessous s'appliquent pour une fréquence du champ tournant de 200 Hz. Vous atteindrez cette fréquence par exemple avec un moteur à quatre paires de pôles et à la vitesse de rotation nominale de 3000 tr/min. Pour les fréquences du champ tournant supérieures, respectez dans tous les cas la réduction de charge indiquée. Par ailleurs, tenez également compte de la dépendance de la cadence.

Propriétés

Spécification	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41		
Nº ID	53188	53189	53190		
Plage de tension		3×0 à 480 V_{CA}			
Gamme de fréquence		0 – 200 Hz			
Courant nominal I _{N,MF} à 4 kHz	4 A	17,5 A	38 A		
Courant nominal I _{N,MF} à 8 kHz	3,3 A	15,2 A	30,4 A		
Longueur de câble moteur		100 m			
max. admissible avec					
self de sortie					
Température		40 °C			
ambiante max. $\vartheta_{\text{amb,max}}$					
Degré de protection		IP00			
Pertes d'enroulement	11 W	29 W	61 W		
Pertes de fer	25 W	16 W	33 W		
Raccordement		Borne à vis			
Section de conducteur max.	10 mm²				
UL Recognized		Oui			
Component (CAN; USA)					
Marquage		cURus, CE			

Tab. 49: Spécification TEP

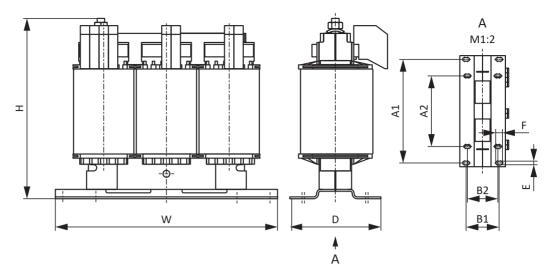


Fig. 8: Croquis coté TEP

Dimension	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41
Hauteur H [mm]	153 max.	153 max.	180 max.
Largeur W [mm]	178	178	219
Profondeur D [mm]	73	88	119
Écart vertical –	166	166	201
Trous de fixation A1 [mm]			
Écart vertical –	113	113	136
Trous de fixation A2 [mm]			
Écart horizontal –	53	68	89
Trous de fixation B1 [mm]			
Écart horizontal –	49	64	76
Trous de fixation B2 [mm]			
Trous percés – Profondeur E [mm]	5,8	5,8	7
Trous percés – Largeur F [mm]	11	11	13
Raccord à vis – M	M5	M5	M6
Poids sans emballage [g]	2900	5900	8800

Tab. 50: Dimensions et poids TEP

4.4.7 Blindage CEM

Le blindage CEM EM6A sert à poser le blindage du câble de puissance. Deux modèles sont disponibles.

Blindage CEM EM6A0

Nº ID 56459

Blindage CEM pour le servo-variateur SD6 jusqu'à la taille 2.

Pièce accessoire pour la connexion blindée du câble de puissance.

À monter sur le carter de base.

Borne de blindage incluse.

Blindage CEM EM6A3

Nº ID 56521

Blindage CEM pour les servo-variateurs des gammes MDS 5000, SDS 5000 et SD6.

Pièce accessoire pour la connexion blindée du câble de puissance pour les servo-variateurs de taille 3.

À monter sur le boîtier de base.

Borne de blindage incluse.

Le cas échéant, vous pouvez poser en outre le blindage du câble de la résistance de freinage et du couplage du circuit intermédiaire sur la tôle de blindage.

4.4.8 Boîtier adaptateur pour encodeur

Boîtier adaptateur pour encodeur LA6A00

Nº ID 56510

Adaptateur d'interface pour les signaux incrémentaux TTL différentiel et les signaux de capteur à effet Hall TTL single-ended.

L'adaptateur sert à la conversion et à la transmission de signaux TTL de moteurs linéaires synchrones vers le servo-variateur SD6. Une interface variable interne convertit les signaux d'entrée conformément aux interfaces standard STOBER.

Câble de raccordement SSI/TTL X120

Nº ID 49482

Câble de raccordement entre l'interface TTL X120 sur le servo-variateur SD6 (sur le module de borne RI6 ou XI6) et l'interface X301 sur le boîtier adaptateur LA6 pour la transmission des signaux de capteur à effet Hall. 0,3 m.

Câble de raccordement LA6/AX 5000

Câble de raccordement du port X4 au servo-variateur SD6 avec X300 sur le boîtier adaptateur LA6 pour la transmission des signaux d'encodeur incrémental.

Les modèles suivants sont disponibles :

Nº ID 45405 : 0,5 m. Nº ID 45386 : 2,5 m.

4.4.9 Module de pile d'encodeur

Absolute Encoder Support AES

Nº ID 55452

Module de pile pour la mise en mémoire tampon de la tension d'alimentation en cas d'utilisation d'encodeurs inductifs EnDat 2.2 numériques avec étage Multiturn sauvegardé par pile, par exemple EBI1135 ou EBI135. Une pile est fournie.

Information

Notez que pour des raisons éventuelles d'encombrement, vous avez besoin d'un câble de rallonge à 15 pôles entre le connecteur femelle et AES pour le raccordement au servo-variateur.

• Entre le connecteur femelle et AES, il est possible d'utiliser un câble de rallonge blindé du commerce avec un connecteur mâle D-sub à 15 pôles et d'une longueur ≤ 1 m.

Pile amovible AES

N° ID 55453

Pile amovible pour le module de pile AES.

4.4.10 Mémoire de données amovible

Mémoire de données amovible Paramodul

Compris dans le modèle standard.

Nº ID 56403

Le Paramodul avec carte Micro SD intégrée (à partir de 512 Mo, type industriel) est disponible en guise de mémoire enfichable.

Informations supplémentaires 4.5

4.5.1 **Directives et normes**

Les directives et normes européennes suivantes s'appliquent aux servo-variateurs :

- Directive Machines 2006/42/CE
- Directive Basse tension 2014/35/UE
- Directive CEM 2014/30/UE
- EN ISO 13849-1:2015
- EN ISO 13849-2:2012
- EN 61800-3:2004 et A1:2012
- EN 61800-5-1:2007
- EN 61800-5-2:2007

4.5.2 Symboles et marquages

Self sans protection contre la surcharge EN 61558-2-20.

Symbole de mise à la terre

Symbole de mise à la terre conformément à CEI 60417, symbole 5019.

Marquage sans plomb RoHS

Marquage conformément à la Directive RoHS 2011-65-UE sur la limitation des substances dangereuses.

Marquage CE

Auto-déclaration du fabricant : le produit satisfait aux directives UE.

Marquage UKCA

Autodéclaration du fabricant : le produit est conforme aux directives du Royaume-Uni.

Marque UL

Ce produit figure sur la liste UL pour les États-Unis et le Canada. Des échantillons représentatifs de ce produit ont fait l'objet d'une évaluation UL et satisfont aux normes applicables.

Marquage UL pour les composants reconnus

Ces composants ou ce matériel sont certifiés UL. Des échantillons représentatifs de ce produit ont fait l'objet d'une évaluation UL et satisfont aux exigences applicables.

4.5.3 **Autres documentations**

Vous trouverez d'autres documentations relatives au produit à l'adresse http://www.stoeber.de/fr/download

Saisissez le nº ID de la documentation dans le champ Critère de recherche.

Documentation	Nº ID
Manuel du servo-variateur SD6	442589
Manuel du module de sécurité SE6	442797

5 Servoconvertisseurs POSIDYN SDS 5000

Table des matières

5.1	Aperçu		134
	5.1.1	Caractéristiques	135
	5.1.2	Composants logiciels	137
	5.1.3	Formation pratique	138
5.2	Caracte	éristiques techniques	139
	5.2.1	Désignation de type	139
	5.2.2	Tailles	139
	5.2.3	Caractéristiques techniques générales	140
	5.2.4	Caractéristiques électriques	141
	5.2.5	Réduction de charge par augmentation de la cadence	147
	5.2.6	Dimensions	148
	5.2.7	Espaces libres minimaux	150
5.3	Combir	naisons convertisseur / moteur	151
5.4	Access	oires	153
	5.4.1	Technique de sécurité	153
	5.4.2	Communication	153
	5.4.3	Module de borne	155
	5.4.4	Résistance de freinage	156
	5.4.5	Self	163
	5.4.6	Module de freinage et blindage CEM	165
	5.4.7	Commutateur d'axe	165
	5.4.8	Module de pile d'encodeur	166
	5.4.9	Mémoire de données amovible	166
5.5	Informa	tions supplémentaires	167
	5.5.1	Directives et normes	167
	5.5.2	Symboles et marquages	167
	5.5.3	Autres documentations	167

Servoconvertisseurs POSIDYN

SDS 5000

5.1 Aperçu

Dynamique élevée pour servoaxes entièrement numériques

Caractéristiques

- Courant nominal de sortie 60 A max. (pour cadence 8 kHz)
- Capacité de surcharge 250 %
- Plage de puissance : de 0,75 kW à 45 kW
- Régulation de moteurs brushless synchrones rotatifs et de moteurs asynchrones
- Interfaces encodeur multifonction
- Paramétrage moteur automatique à partir de la plaque signalétique électronique du moteur
- Bus système isochrone (IGB-Motionbus) pour le paramétrage et les applications multiaxes
- Communication via PROFIBUS DP, PROFINET, CANopen ou EtherCAT
- Fonctions de sécurité Safe Torque Off (STO) et Safe Stop 1 (SS1): SIL 3, PL e, (cat. 3)
- Entrées et sorties numériques et analogiques en option
- Hacheur de freinage, commande de frein et filtre réseau
- Unité de commande confortable composée d'un écran avec affichage en clair et de touches
- Mémoire de données amovible Paramodul

5.1.1 Caractéristiques

Les gammes de la 5e génération de convertisseurs STOBER sont des systèmes de convertisseurs modulaires entièrement numériques pour le fonctionnement de moteurs synchrones et asynchrones rotatifs. Elles englobent des types pour le fonctionnement direct sur un réseau monophasé ou triphasé dans une plage de tension comprise entre 200 V_{CA} et 528 V_{CA} . Un filtre réseau CEM est intégré. Les interfaces encodeur EnDat 2.1/2.2 numérique, SSI et incrémental (HTL/TTL) sont disponibles en exécution standard. Une analyse par résolveur est disponible en option. Différents modules optionnels permettent d'adapter le convertisseur aux exigences de vos applications. Le module de sécurité ASP 5001 permet de réaliser les fonctions de sécurité Safe Torque Off (STO) et Safe Stop 1 (SS1) conformément à DIN EN ISO 13849-1 et DIN EN 61800-5-2 pour les applications de sécurité. Les modules de communication offrent la liaison à une commande via les bus de terrain PROFIBUS DP, PROFINET, CANopen ou EtherCAT. Qui plus est, des modules de borne sont disponibles pour le raccordement de signaux analogiques et numériques, ainsi que d'autres signaux d'encodeur. L'écran texte en clair et le clavier facilitent le diagnostic en cas de dérangements et permettent l'accès rapide aux paramètres. La mémoire de données amovible Paramodul sert à valider toutes les données liées à l'application d'un convertisseur à un autre.

Il est prévu, de préférence, d'utiliser l'encodeur EnDat 2.1/2.2 pour l'exploitation des moteurs brushless synchrones STOBER. Ces systèmes d'encodeur permettent d'obtenir la meilleur qualité de régulation. Le moteur peut être automatiquement paramétré à partir de la plaque signalétique électronique.

SDS 5000

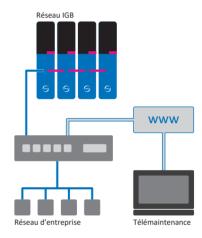
Commutation d'axe séquentielle POSISwitch AX 5000

L'accessoire POSISwitch AX 5000 permet l'exploitation séquentielle de jusqu'à quatre moteurs brushless synchrones avec encodeur de valeur absolue EnDat 2.1/2.2 numérique sur un convertisseur. La commutation des signaux d'encodeur de valeur absolue et les signaux d'adressage pour la commutation de freins et du câble moteur sont exécutés par le module POSISwitch AX 5000. Les signaux d'encodeur entièrement numériques avec protocole EnDat assurent la simplicité et l'immunité CEM de la commutation.

Integrated Bus (IGB) pour la performance, le confort et la sécurité

Le servoconvertisseur SDS 5000 est équipé en série de deux interfaces pour IGB. Celui-ci permet la configuration aisée via Ethernet et l'échange de données isochrone pour les fonctions suivantes :

- Synchronisation multiaxe entre les servoconvertisseurs (IGB-Motionbus)
- Connexion internet pour la télémaintenance d'un ou plusieurs convertisseurs
- Connexion directe entre le servoconvertisseur et l'ordinateur personnel


IGB-Motionbus

IGB-Motionbus assure l'échange de données cyclique et isochrone entre plusieurs POSIDYN SDS 5000 au sein du réseau IGB. Outre la transmission des valeurs Maître pour une exploitation Maître/Esclave, un nombre quelconque de données supplémentaires, par exemple pour les applications sur mesure, peut également être transmis.

STOBER Concept de télémaintenance

Le service de télémaintenance STOBER permet d'exécuter tous les processus au moyen du logiciel de mise en service comme lors d'une intervention de maintenance in situ. Ce concept permet aux personnes impliquées d'effectuer une maintenance régulière et sécurisée. Cette manière de procéder garantit que le responsable se trouve sur place devant la machine afin de veiller au bon déroulement et à la sécurité d'autres personnes. Le spécialiste de la télémaintenance peut, pour sa part, être sûr de communiquer avec un interlocuteur responsable sur place qui contrôle la situation sur la machine.

Le service de télémaintenance permet d'exécuter tous les processus comme lors d'une intervention de maintenance in situ.

Gestion du frein

Le servoconvertisseur POSIDYN SDS 5000 peut commander un ou deux systèmes de freinage 24 $V_{\rm CC}$ via le module de freinage BRS 5001. La gestion du frein offre les fonctions suivantes pour les deux systèmes de freinage :

- Test de frein cyclique
- Rodage du frein

Disponible en option : module de freinage BRS 5001

POSITool

Le logiciel de mise en service POSITool de 5e génération est doté de toutes les fonctions permettant une utilisation efficace des convertisseurs dans les applications monoaxe et multiaxe.

Mémoire de données amovible Paramodul

La mémoire de données amovible pour la mise en service en série rapide par processus de copie et pour faciliter le remplacement de l'appareil.

5.1.2 Composants logiciels

Logiciel d'application modulaire

Les appareils de 5e génération de convertisseurs STOBER peuvent – selon les besoins – être équipés de diverses applications standard à l'aide du logiciel de mise en service POSITool. Par ailleurs, une programmation en vertu de la norme CEI 61131-3 avec CFC permet de créer de nouvelles applications ou d'élargir les applications actuelles. Le système d'exploitation du convertisseur est compatible multiaxe et supporte jusqu'à quatre axes avec des zones d'applications et de paramètres séparées.

Mode Vitesse (application standard)

Valeur de consigne rapide

Application de vitesse de rotation simple pour applications à profil bas. La valeur de consigne de vitesse de rotation et la limite de couple peuvent être prédéfinies via les entrées analogiques ou numériques.

Mode Couple/force et Vitesse (application standard)

Valeur de consigne confort

Application de valeur de consigne avancée pour le couple et la vitesse de rotation. Outre la valeur de consigne rapide, les valeurs de consigne et les limites peuvent être prédéfinies via des valeurs fixes, le potentiomètre moteur et d'autres fonctions.

• Régulateur technologique

Régulateur PID pour les applications à régulation par couple ou vitesse de rotation.

Mode Positionnement, Maître/Esclave (application standard)

Commande, commande synchrone

Application de positionnement performante avec une interface d'instruction basée sur PLCopen. Les données d'un ordre de déplacement, comme la position de destination, la vitesse et l'accélération, peuvent être transmises en une seule fois au convertisseur via bus de terrain où elles seront ensuite automatiquement traitées. L'étendue des fonctions est complétée par la came électrique, le point de commutation du bloc de déplacement et Posi-Latch.

Bloc de déplacement

Vaste application de positionnement avec jusqu'à 256 blocs de déplacement mémorisés basés sur PL-Copen. Ces blocs de déplacement peuvent être sélectionnés individuellement via le bus de terrain ou via les entrées numériques ou démarrés par concaténation. L'étendue des fonctions est complétée par la came électrique et Posi-Latch.

Disque à came électronique avec interface PLCopen (application sur mesure)

L'application de disque à came électronique permet de réaliser des mouvements complexes, comme :

- Coupe à la volée
- Synchroniseur (cadenceur marche/arrêt)
- Dispositif de coupe transversale
- Barre de soudure / Poinçon
- Indexage

Ces applications peuvent être facilement et rapidement mises en œuvre à l'aide de la programmation graphique en vertu de CEI 61131-3 CFC. Il est par conséquent également possible de procéder à des adaptations personnalisées en fonction des applications. L'utilisateur formé dispose à cet effet de blocs fonctionnels selon PLCopen Motion Control.

5.1.3 Formation pratique

STOBER propose un programme de formation échelonné consacré essentiellement au servo-variateur.

G5 Basic

Contenus de la formation : aperçu système, montage et mise en service du convertisseur. Utilisation de modules optionnels. Paramétrage, mise en service et diagnostic via l'écran intégré et le logiciel de mise en service. Télémaintenance. Notions de base sur l'optimisation du régulateur. Configuration de la chaîne cinématique. Fonctions logicielles intégrées. Applications logicielles. Connexion à une commande supérieure. Notions de base de la technique de sécurité. Exercices pratiques dans le cadre de la formation.

Logiciel utilisé: POSITool.

G5 Customized

Contenus de la formation : programmation graphique avec CFC. Connaissances spécifiques dans le domaine de la technique de régulation, de commande et de sécurité. Disque à came électronique. Exercices pratiques dans le cadre de la formation.

5.2 Caractéristiques techniques

Les caractéristiques techniques relatives aux convertisseurs figurent dans les chapitres suivants.

5.2.1 Désignation de type

SDS	5	075	Α

Tab. 1: Exemple de code pour la désignation de type

Code	Désignation	Exécution
SDS	Gamme	
5	Génération	5e génération
075	Puissance	075 = 7,5 kW
_	Versions de matériel	Sans étiquetage : jusqu'à la version de matériel
Α		HW 199
		A : à partir de la version de matériel HW 200

Tab. 2: Signification de l'exemple de code

5.2.2 Tailles

Туре	N° ID	Taille
SDS 5007A	55428	TA 0
SDS 5008A	55429	TA 0
SDS 5015A	55430	TA 0
SDS 5040A	55431	TA 1
SDS 5075A	55432	TA 1
SDS 5110A	55433	TA 2
SDS 5150A	55434	TA 2
SDS 5220A	55435	TA 3
SDS 5370A	55436	TA 3
SDS 5450A	55437	TA 3

Tab. 3: Types et tailles SDS 5000 disponibles

SDS 5000 dans les tailles 3, 2, 1 et 0

5.2.3 Caractéristiques techniques générales

Les informations ci-dessous s'appliquent à tous les types de convertisseurs.

Caractéristiques de l'appareil	
Degré de protection de l'appareil	IP20
Degré de protection de l'encombrement	Au minimum IP54
Classe de protection	Classe de protection I conformément à EN 61140
Antiparasitage	Filtre réseau intégré conformément à EN 61800-3, émission de
	parasites classe C3
Catégorie de surtension	III conformément à EN 61800-5-1
Marquage	CE, cULus, RoHS

Tab. 4: Caractéristiques de l'appareil

Conditions de transport et de stockage	
Température de stockage/	−20 °C à +70 °C
transport	Modification maximale : 20 K/h
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation
Vibration (transport) conformément à	5 Hz ≤ f ≤ 9 Hz : 3,5 mm
EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 10 m/s ²
	200 Hz ≤ f ≤ 500 Hz : 15 m/s ²
Hauteur de chute en cas de chute libre ¹	0,25 m
Poids < 100 kg	
conformément à EN 61800-2	
(ou CEI 60721-3-2, classe 2M1)	

Tab. 5: Conditions de transport et de stockage

Conditions de fonctionnement	
Température ambiante en service	0 °C à 45 °C pour les caractéristiques nominales
	45 °C à 55 °C avec réduction –2,5 % / K
Humidité de l'air	Humidité relative de l'air maximale 85 %, sans condensation
Hauteur d'installation	0 m à 1000 m au-dessus du niveau de la mer sans restriction
	1000 m à 2000 m au-dessus du niveau de la mer avec réduction
	de charge de -1,5 % / 100 m
Degré d'encrassement	Degré d'encrassement 2 conformément à EN 50178
Ventilation	Ventilateur intégré
Vibration (fonctionnement) conformé-	5 Hz ≤ f ≤ 9 Hz : 0,35 mm
ment à EN 60068-2-6	9 Hz ≤ f ≤ 200 Hz : 1 m/s ²

Tab. 6: Conditions de fonctionnement

Temps de décharge	
Décharge automatique circuit inter-	6 min
médiaire CC	

Tab. 7: Temps de décharge du circuit intermédiaire

5.2.4 Caractéristiques électriques

Vous trouverez les caractéristiques électriques des tailles disponibles, ainsi que les propriétés du chopper de freinage dans les chapitres suivants.

Une explication des symboles utilisés figure au chapitre [9.1].

5.2.4.1 Taille 0 : de SDS 5007A à SDS 5015A

Caractéristiques électriques	SDS 5007A	SDS 5008A	SDS 5015A
N° ID	55428	55429	55430
Puissance du moteur recommandée	0,75 kW	0,75 kW	1,5 kW
U _{1PU}	1 × 230 V,	3 × 400 V,	
	+20 % / -40 %,	+ +32 % / – 50 %, 50 Hz ;	
	50/60 Hz	3 × 480 V,	
		+ +10 % / – 58 %, 60 Hz	
I _{1N,PU}	1 × 5,9 A	3 × 2,2 A	3 × 4 A
f _{2PU}	0 – 700 Hz		
U _{2PU}	0 – 230 V 0 – 400 V		.00 V
U _{maxPU}	440 V	440 V 830 V	

Tab. 8: Caractéristiques électriques SDS 5000, taille 0

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Exploitation avec moteur asynchrone

Caractéristiques électriques	SDS 5007A	SDS 5008A	SDS 5015A	
I _{2N,PU}	3 × 4 A	3 × 2,3 A	3 × 4,5 A	
I _{2maxPU}	180	180 % pour 5 s ; 150 % pour 30 s		
f _{PWM,PU}	4 kHz²			

Tab. 9: Caractéristiques électriques SDS 5000, taille 0 pour cadence 4 kHz

Caractéristiques électriques	SDS 5007A	SDS 5008A	SDS 5015A
I _{2N,PU}	3 × 3 A	3 × 1,7 A	3 × 3,4 A
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s		
$f_{PWM,PU}$	8 kHz³		

Tab. 10: Caractéristiques électriques SDS 5000, taille 0 pour cadence 8 kHz

Caractéristiques électriques	SDS 5007A	SDS 5008A	SDS 5015A
U _{onCH}	400 – 420 V	780 – 800 V	
U _{offCH}	360 – 380 V	740 – 760 V	
R _{2minRB}	100 Ω	100 Ω	
P _{maxRB}	1,8 kW	6,4	kW

Tab. 11: Caractéristiques électriques du chopper de freinage, taille 0

² Cadence réglable de 4 à 16 kHz (voir chapitre Réduction de charge)

³ Cadence réglable de 4 à 16 kHz (voir chapitre Réduction)

5.2.4.2 Taille 1: de SDS 5040A à SDS 5075A

Caractéristiques électriques	SDS 5040A	SDS 5075A	
N° ID	55431	55432	
Puissance du moteur recommandée	4,0 kW	7,5 kW	
U _{1PU}	3 × 4	00 V,	
	+ +32 % / – 50 %, 50 Hz ;		
	3 × 480 V,		
	+ +10 % / -	58 %, 60 Hz	
I _{1N,PU}	3 × 9,3A	3 × 15,8 A	
f_{2PU}	0 – 700 Hz		
U _{2PU}	0 – 400 V		
U _{maxPU}	830 V		

Tab. 12: Caractéristiques électriques SDS 5000, taille 1

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Exploitation avec moteur asynchrone

Caractéristiques électriques	SDS 5040A	SDS 5075A	
I _{2N,PU}	3 × 10 A	3 × 16 A	
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s		
f _{PWM,PU}	4 kHz ⁴		

Tab. 13: Caractéristiques électriques SDS 5000, taille 1 pour cadence 4 kHz

Caractéristiques électriques	SDS 5040A	SDS 5075A	
I _{2N,PU}	3 × 6 A	3 × 10 A	
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s		
f _{PWM,PU}	8 kHz ⁵		

Tab. 14: Caractéristiques électriques SDS 5000, taille 1 pour cadence 8 kHz

Caractéristiques électriques	SDS 5040A	SDS 5075A	
U _{onCH}	780 – 800 V		
U _{offCH}	740 – 760 V		
R _{2minRB}	47 Ω 47 Ω		
P_{maxRB}	13,6 kW	13,6 kW	

Tab. 15: Caractéristiques électriques du chopper de freinage, taille 1

⁴ Cadence réglable de 4 à 16 kHz (voir chapitre Réduction de charge)

¹⁴² $\,^{5}$ Cadence réglable de 4 à 16 kHz (voir chapitre Réduction)

5.2.4.3 Taille 2 : de SDS 5110A à SDS 5150A

Caractéristiques électriques	SDS 5110A	SDS 5150A		
N° ID	55433	55434		
Puissance du moteur recommandée	11 kW 15 kW			
U _{1PU}	3 × 400 V, + +32 % / – 50 %, 50 Hz; 3 × 480 V, + +10 % / – 58 %, 60 Hz			
I _{1N,PU}	3 × 24,5 A	3 × 32,6 A		
f_{2PU}	0 – 700 Hz			
U _{2PU}	0 – 400 V			
U _{maxPU}	830 V			

Tab. 16: Caractéristiques électriques SDS 5000, taille 2

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Exploitation avec moteur asynchrone

Caractéristiques électriques	SDS 5110A	SDS 5150A	
I _{2N,PU}	3 × 22 A	3 × 32 A	
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s		
f _{PWM,PU}	4 kHz ⁶		

Tab. 17: Caractéristiques électriques SDS 5000, taille 2 pour cadence 4 kHz

Caractéristiques électriques	SDS 5110A	SDS 5150A	
I _{2N,PU}	3 × 14 A	3 × 20 A	
I _{2maxPU}	250 % pour 2 s ; 200 % pour 5 s		
f _{PWM,PU}	8 kHz ⁷		

Tab. 18: Caractéristiques électriques SDS 5000, taille 2 pour cadence 8 kHz

Caractéristiques électriques	SDS 5110A	SDS 5150A
U _{onCH}	780 – 800 V	
U _{offCH}	740 – 760 V	
R _{2minRB}	22 Ω	
P_{maxRB}	29,1 kW	

Tab. 19: Caractéristiques électriques du chopper de freinage, taille 2

 $^{^{6}}$ Cadence réglable de 4 à 16 kHz (voir chapitre Réduction de charge)

⁷ Cadence réglable de 4 à 16 kHz (voir chapitre Réduction)

5.2.4.4 Taille 3 : de SDS 5220A à SDS 5450A

Caractéristiques électriques	SDS 5220A	SDS 5370A	SDS 5450A
N° ID	55435	55436	55437
Puissance du moteur recommandée	22 kW	37 kW	45 kW
U _{1PU}		3 × 400 V,	
		+ +32 % / – 50 %, 50 Hz ;	;
	3 × 480 V,		
	+ +10 % / – 58 %, 60 Hz		
I _{1N,PU}	1 × 37 A	3 × 62 A	3 × 76 A
f_{2PU}	0 – 700 Hz		
U _{2PU}	0 – 400 V		
U _{maxPU}	830 V		

Tab. 20: Caractéristiques électriques SDS 5000, taille 3

Courants nominaux jusqu'à +45 °C (dans l'armoire électrique)

Exploitation avec moteur asynchrone

Caractéristiques électriques	SDS 5220A	SDS 5370A	SDS 5450A
I _{2N,PU}	3 × 44 A	3 × 70 A	3 × 85 A
I _{2maxPU}	180 % pour 5 s ; 150 % pour 30 s		
f _{PWM,PU}	4 kHz ⁸		

Tab. 21: Caractéristiques électriques SDS 5000, taille 3 pour cadence 4 kHz

Caractéristiques électriques	SDS 5220A	SDS 5370A	SDS 5450A	
I _{2N,PU}	3 × 30 A	3 × 50 A	3 × 60 A	
I _{2maxPU}	250	250 % pour 2 s ; 200 % pour 5 s		
$f_{PWM,PU}$	8 kHz ⁹			

Tab. 22: Caractéristiques électriques SDS 5000, taille 3 pour cadence 8 kHz

Caractéristiques électriques	SDS 5220A	SDS 5370A	SDS 5450A
U _{onCH}	780 – 800 V		
U _{offCH}	740 – 760 V		
R _{intRB}	30 Ω (résistance CTP ; 100 W ; max. 1 kW pour 1 s ; τ = 40 s)		
R _{2minRB}	15 Ω		
P _{maxRB}	42 kW		

Tab. 23: Caractéristiques électriques du chopper de freinage, taille 3

⁸ Cadence réglable de 4 à 16 kHz (voir chapitre Réduction de charge)

 $^{144 \}quad {}^{9}\text{Cadence r\'eglable de 4 \`a 16 kHz (voir chapitre R\'eduction)}$

5.2.4.5 Données de puissance dissipée conformément à EN 61800-9-2

Туре	Courant nominal	Puissance appa- rente	Pertes absolues P _{v,cu} ¹⁰			P	oints de fo	onctionner	nent ¹¹			Classe IE ¹²
	2.4,1.0		1,00	(0/25)	(0/50)	(0/100)	(50/25)	(50/50)	(50/100)	(90/50)	(90/100)	
							Perte	s relatives				
	[A]	[kVA]	[W]					[%]				
SDS 5007A	4	0,9	10	5,01	5,07	5,68	5,20	5,37	6,30	5,88	7,43	EI2
SDS 5008A	2,3	1,6	10	2,98	3,13	3,49	3,02	3,22	3,71	3,36	4,09	EI2
SDS 5015A	4,5	3,1	12	1,71	1,86	2,24	1,75	1,97	2,51	2,16	3,04	EI2
SDS 5040A	10	6,9	12	1,38	1,54	1,93	1,43	1,64	2,17	1,80	2,57	EI2
SDS 5075A	16	11,1	12	0,95	1,12	1,66	0,99	1,23	1,98	1,41	2,52	EI2
SDS 5110A	22	15,2	15	0,80	0,97	1,49	0,84	1,06	1,75	1,21	2,19	EI2
SDS 5150A	32	22,2	15	0,70	0,87	1,40	0,74	0,97	1,66	1,11	2,08	EI2
SDS 5220A	44	30,5	35	0,61	0,76	1,21	0,68	0,90	1,53	1,06	1,96	EI2
SDS 5370A	70	48,5	35	0,53	0,69	1,18	0,59	0,82	1,49	0,97	1,89	EI2
SDS 5450A	85	58,9	35	0,47	0,64	1,18	0,54	0,78	1,50	0,94	1,94	EI2

Tab. 24: Pertes relatives des convertisseurs SDS 5000 conformément à EN 61800-9-2

 $^{^{\}rm 10}\,\mathrm{Pertes}$ absolues si le bloc de puissance est désactivé

 $^{^{\}rm 11}$ Points de fonctionnement en cas de cadence du stator moteur relative en % et de courant couple relatif en %

¹² Classe IE conformément à EN 61800-9-2

Туре	Courant nominal I _{2N,PU}	Puissance appa- rente	Pertes absolues P _{v,cu} ¹³			P	oints de fo	onctionne	ment ¹⁴			Classe IE ¹⁵	Comparaison ¹⁶
				(0/25)	(0/50)	(0/100)	(50/25)	(50/50)	(50/100)	(90/50)	(90/100)		
							Perte	es absolue	s				
	[4]	[[4]/4]	[W]		P _v [W]								
	[A]	[kVA]											[%]
SDS 5007A	4	0,9	10	45,1	45,6	51,1	46,8	48,3	56,7	52,9	66,9	EI2	51,8
SDS 5008A	2,3	1,6	10	47,7	50,1	55,8	48,3	51,5	59,3	53,8	65,4	EI2	40,2
SDS 5015A	4,5	3,1	12	52,9	57,6	69,3	54,4	61,0	77,9	67,1	94,1	EI2	39,6
SDS 5040A	10	6,9	12	95,3	106,1	133,3	98,6	113,2	149,9	123,9	177,0	EI2	37,1
SDS 5075A	16	11,1	12	104,9	124,0	184,6	110,3	136,6	219,8	156,0	279,8	EI2	35,8
SDS 5110A	22	15,2	15	121,5	146,9	226,1	128,1	161,6	266,0	183,7	332,7	EI2	32,9
SDS 5150A	32	22,2	15	154,7	192,8	311,3	164,6	214,6	369,3	245,9	462,1	EI2	38,3
SDS 5220A	44	30,5	35	187,5	232,2	368,7	207,7	273,9	466,8	323,0	597,8	EI2	32,1
SDS 5370A	70	48,5	35	256,6	332,3	570,8	287,9	397,0	721,5	471,0	915,9	EI2	33,9
SDS 5450A	85	58,9	35	277,8	376,9	692,3	317,4	459,0	886,1	554,6	1143,1	EI2	35,3

Tab. 25: Pertes absolues des convertisseurs SDS 5000 conformément à EN 61800-9-2

Conditions générales

Les données de pertes s'appliquent aux convertisseurs sans accessoires.

Le calcul de la puissance dissipée repose sur une tension de réseau triphasée avec 400 V_{CA}/50 Hz.

Les données calculées contiennent un supplément de 10 % conformément à EN 61800-9-2.

Les données relatives à la puissance dissipée se réfèrent à une cadence de 4 kHz.

Les pertes absolues lorsque le bloc de puissance est désactivé se réfèrent à une alimentation 24 V_{cc} de l'électronique de commande.

¹³ Pertes absolues si le bloc de puissance est désactivé

 $^{^{14}}$ Points de fonctionnement en cas de cadence du stator moteur relative en % et de courant couple relatif en %

¹⁵ Classe IE conformément à EN 61800-9-2

^{146 &}lt;sup>16</sup> Comparaison des pertes vers le convertisseur de référence par rapport à EI2 dans le point nominal (90, 100)

5.2.4.6 Données de puissance dissipée des accessoires

Si vous commandez le convertisseur avec les accessoires, les pertes augmentent comme suit :

Туре	Pertes absolues P _v [W]
Module de sécurité ASP 5001	1
Module de borne SEA 5001	< 2
Module de borne XEA 5001	< 5
Module de borne REA 5001	< 5
Module de communication CAN 5000	1
Module de communication DP 5000	< 2
Module de communication ECS 5000	< 2
Module de communication PN 5000	< 4
Module de freinage BRM 5000 / BRS 5001	< 1

Tab. 26: Pertes absolues des accessoires

Information

Pour le dimensionnement, tenez compte, en outre, de la puissance dissipée absolue de l'encodeur (normalement < 3 W) et du frein.

Les informations relatives à la perte des autres accessoires disponibles en option sont fournies dans les caractéristiques techniques des accessoires correspondants.

5.2.5 Réduction de charge par augmentation de la cadence

En fonction de la cadence $f_{PWM,PU}$, on obtient les valeurs suivantes des courants de sortie $I_{2N,PU}$. Notez que le mode de commande Servo autorise uniquement les réglages suivants : 8 kHz et 16 kHz.

Туре	I _{2N,PU} 4 kHz	I _{2N,PU} 8 kHz	I _{zn,pu} 16 kHz
SDS 5007A	4 A	3 A	2 A
SDS 5008A	2,3 A	1,7 A	1,2 A
SDS 5015A	4,5 A	3,4 A	2,2 A
SDS 5040A	10 A	6 A	3,3 A
SDS 5075A	16 A	10 A	5,7 A
SDS 5110A	22 A	14 A	8,1 A
SDS 5150A	32 A	20 A	11,4 A
SDS 5220A	44 A	30 A	18,3 A
SDS 5370A	70 A	50 A	31,8 A
SDS 5450A	85 A	60 A	37,8 A

Tab. 27: Courant nominal de sortie $I_{2N,PU}$ en fonction de la cadence

5.2.6 **Dimensions**

Pour les dimensions des tailles SDS 5000 disponibles, consultez les chapitres suivants.

5.2.6.1 Dimensions: tailles 0 à 2

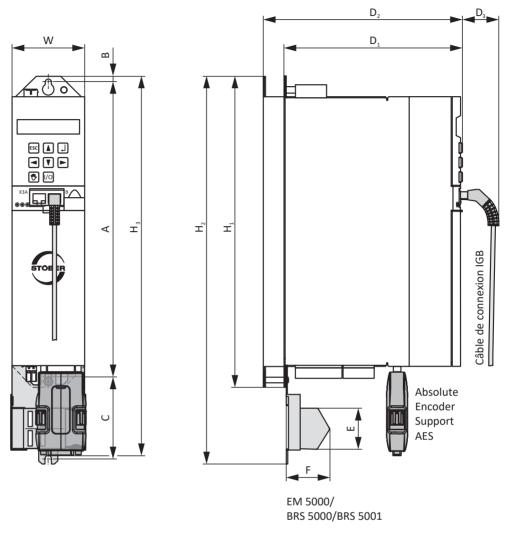


Fig. 1: Croquis coté SDS 5000, tailles 0 à 2

Dimensions [mm]			TA 0	TA 1	TA 2			
Convertisseur	Hauteur	H ₁		300				
		H ₂	36	50 ¹⁷ / 373	l ¹⁸			
		H ₃ ¹⁹		365				
	Largeur	W	7	0	105			
	Profondeur	$D_\mathtt{1}$	175	260	260			
		D ₂ ²⁰	193	278	278			
		D ₃		40				
Blindage CEM	Hauteur	E	3	7,5 ²¹ / 44	22			
	Profondeur	F		40				
Trous de fixation	Écart vertical par rapport au bord supérieur	В		6				
	Écart vertical	А		283+2				
	Écart vertical	C ²³		79				

Tab. 28: Dimensions SDS 5000, tailles 0 à 2 [mm]

 $^{^{17}\,\}mathrm{H2}$ = hauteur y compris blindage CEM EM 5000

¹⁸ H2 = hauteur y compris module de freinage BRS 5001

¹⁹ H3 = hauteur y compris AES

²⁰ D2 = profondeur y compris résistance de freinage RB 5000

 $^{^{21}\,\}mathrm{E}$ = hauteur y compris blindage CEM EM 5000

²² E = hauteur y compris module de freinage BRS 5001

²³C = écart vertical dans le cas du module de freinage BRS 5001

5.2.6.2 Dimensions: taille 3

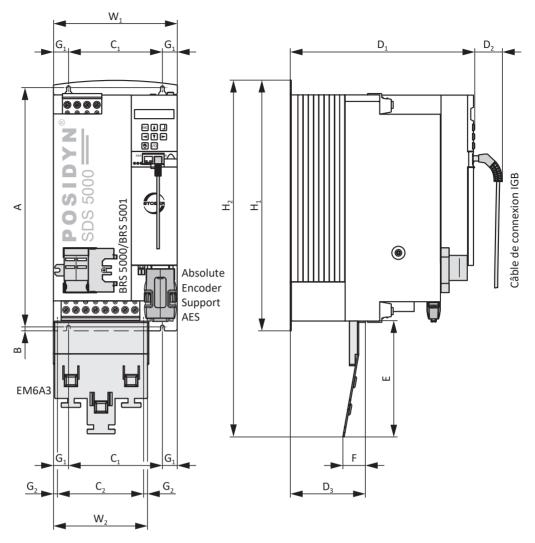


Fig. 2: Croquis coté SDS 5000, taille 3

Dimensions [mm]			TA 3
Convertisseur	Hauteur	H ₁	382,5
		H ₂ ²⁴	540
	Largeur	W_1	194
	Profondeur	D_1	276
		D ₂	40
Blindage CEM	Hauteur	E	174
	Largeur	W_2	147
	Profondeur	F	34
	Profondeur	D ₃	113
Trous de fixation	Écart vertical	Α	365+2
	Écart vertical par rapport au bord inférieur	В	6
	Écart horizontal	C ₁ ²⁵	150+0,2/-0,2
	Écart horizontal par rapport au bord latéral	G ₁ ²⁶	20
	Écart horizontal	C ₂ ²⁷	132
	Écart horizontal par rapport au bord latéral	G ₂ ²⁸	7,5

Tab. 29: Dimensions SDS 5000, taille 3 [mm]

²⁴ H2 = hauteur y compris blindage CEM EM6A3

²⁵C1 = écart horizontal des trous de fixation du convertisseur

²⁶ G1 = écart horizontal par rapport au bord latéral du convertisseur

 $^{^{27}}$ C2 = écart horizontal des trous de fixation du blindage CEM EM6A3

 $^{^{28}\,\}mathrm{G2}$ = écart horizontal par rapport au bord latéral du blindage CEM EM6A3

5.2.7 Espaces libres minimaux

Les dimensions indiquées se rapportent aux bords extérieurs du servo-variateur.

Espace libre minimal	Vers le haut	Vers le bas	Vers la page
Taille 0 – Taille 2	100	100	5
avec blindage CEM ou module de frei- nage	100	120	5
Taille 3	100	100	5
avec blindage CEM	100	220	5

Tab. 30: Espaces libres minimaux [mm]

5.3 Combinaisons convertisseur / moteur

Une explication des symboles utilisés figure au chapitre [> 9.1].

Moteur brushless synchrone EZ ($n_N = 2000 \text{ tr/min}$) – SDS 5000

						5007A	5008A	5015A	5040A	5075A	5110A	5150A	5220A	5370A	5450A
											∪ [A] = 8 kHz)				
	K _{EM} [V/1000 tr/min]	M _N [Nm]	I _N [A]	M ₀ [Nm]	Ι ₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
Refroidis	sement par c	onved	tion I	IC 410						I _{2N,P}	_U / I ₀				
EZ805U	142	43,7	25,9	66,1	37,9									1,3	1,6
Ventilati	tilation forcée IC 416									I _{2N,P}	υ / I ₀				
EZ805B	805B 142 77,2 45,2 94 53,9														1,1

Moteur brushless synchrone EZ (n., = 3000 tr/min) - SDS 5000

Moteur b	Moteur brushless synchrone EZ (n _N = 3000 tr/min) – SDS 5000														
						5007A	5008A	5015A	5040A	5075A	5110A	5150A	5220A	5370A	5450A
										I _{2N,P}	υ [A]				
										(f _{MLI,PU} =	= 8 kHz)				
	K _{EM}	M _N	I _N	M ₀	I _o	3	1,7	3,4	6	10	14	20	30	50	60
	[V/1000 tr/min]	[Nm]	[A]	[Nm]	[A]										
Refroidis	ssement par c	onvec	tion I	C 410						I _{2N,P}	_U / I ₀				
EZ301U	40	0,93	1,99	0,95	2,02	1,5		1,7							
EZ302U	86	1,59	1,6	1,68	1,67		1,0	2,0							
EZ303U	109	2,07	1,63	2,19	1,71		1,0	2,0							
EZ401U	96	2,8	2,74	3	2,88			1,2							
EZ402U	94	4,7	4,4	5,2	4,8				1,3						
EZ404U	116	6,9	5,8	8,6	6,6					1,5					
EZ501U	97	4,3	3,74	4,7	4				1,5						
EZ502U	121	7,4	5,46	8	5,76				1,0	1,7					
EZ503U	119	9,7	6,9	11,1	7,67					1,3	1,8				
EZ505U	141	13,5	8,8	16	10					1,0	1,4	2,0			
EZ701U	95	7,4	7,2	8,3	8					1,3	1,8				
EZ702U	133	12	8,2	14,4	9,6					1,0	1,5				
EZ703U	122	16,5	11,4	20,8	14						1,0	1,4			
EZ705U	140	21,3	14,2	30,2	19,5							1,0	1,5		
EZ802U	136	22,3	13,9	37,1	22,3								1,3		
EZ803U	131	26,6	17,7	48,2	31,1									1,6	1,9
Ventilati	ion forcée IC 4	16								I _{2N P}	υ / Ι ο				
EZ401B	96	3,4	3,4	3,7	3,6				1,7	214,1					
EZ402B	94	5,9	5,5	6,3	5,8				1,0	1,7					
EZ404B	116	10,2	8,2	11,2	8,7				.,.	1,1	1,6				
EZ501B	97	5,4	4,7	5,8	5				1,2	2,0	,-				
EZ502B	121	10,3	7,8	11,2	8,16				,	1,2	1,7				
EZ503B	119	14,4	10,9	15,9	11,8						1,2	1,7			
EZ505B	141	20,2	13,7	23,4	14,7						1,0	1,4			
EZ701B	95	9,7	9,5	10,5	10					1,0	1,4	2,0			
EZ702B	133	16,6	11,8	19,3	12,9						1,1	1,6			
EZ703B	122	24	18,2	28	20							1,0	1,5		
EZ705B	140	33,8	22,9	41,8	26,5								1,1	1,9	
EZ802B	136	34,3	26,5	47,9	28,9								1,0	1,7	
EZ803B	131	49	35,9	66,7	42,3									1,2	1,4

Moteur brushless synchrone EZ ($n_N = 4500 \text{ tr/min}$) – SDS 5000

						5007A	5008A	5015A	5040A	5075A	5110A	5150A	5220A	5370A	5450A
											u [A]				
											8 kHz)				
	K _{EM} [V/1000 tr/min]	M _N [Nm]	Ι _ν [A]	M ₀ [Nm]	l₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
Refroidi	ssement par c	onved	tion I	C 410						l _{2N,P}	_U / I ₀				
EZ505U	103	9,5	8,94	15,3	13,4						1,0	1,5			
EZ703U	99	12,1	11,5	20	17,8							1,1	1,7		
EZ705U	106	16,4	14,8	30	25,2								1,2	2,0	
EZ802U	90	10,5	11,2	34,5	33,3									1,5	1,8
/entilati	ion forcée IC 4	16								l _{2N,P}	_U / I ₀				
EZ505B	103	16,4	16,4	22	19,4							1,0	1,5		
EZ703B	99	19,8	20,3	27,2	24,2								1,2		
EZ705B	106	27,7	25,4	39,4	32,8									1,5	1,8
EZ802B	90	30,6	30,5	47,4	45,1									1,1	1,3
Moteur l	brushless sync	hrone	e EZ (r	n _N = 60	00 tr/mi	in) – SDS	5000								
						5007A	5008A	5015A	5040A	5075A	5110A	5150A	5220A	5370A	5450A
										I _{2N,P} (f _{MLI,PU} =	∪ [A] = 8 kHz)				
	K _{EM} [V/1000 tr/min]	M _N [Nm]	Ι _Ν [A]	M ₀ [Nm]	Ι ₀ [A]	3	1,7	3,4	6	10	14	20	30	50	60
Refroidi	ssement par c	onvec	tion I	C 410						I _{2N,P}	_U / I ₀				
EZ202U	40	0,44	1,07	0,48	1,12		1,5								
EZ203U	40	0,64	1,53	0,73	1,65	1,8	1,0	2,1							
EZ301U	40	0,89	1,93	0,95	2,02			1,7							
EZ302U	42	1,5	3,18	1,68	3,48				1,7						
EZ303U	55	1,96	3,17	2,25	3,55				1,7						
EZ401U	47	2,3	4,56	2,8	5,36				1,1	1,9					
EZ402U	60	3,5	5,65	4,9	7,43					1,3	1,9				
EZ404U	78	5,8	7,18	8,4	9,78					1,0	1,4	2,0			
EZ501U	68	3,4	4,77	4,4	5,8				1,0	1,7	2,4				
EZ502U	72	5,2	7,35	7,8	9,8					1,0	1,4	2,0			
EZ503U	84	6,2	7,64	10,6	11,6						1,2	1,7			
EZ701U	76	5,2	6,68	7,9	9,38					1,1	1,5				
EZ702U	82	7,2	8,96	14,3	16,5							1,2	1,8		
Ventilat i	ion forcée IC 4	16								l _{2N,P}	_U / I ₀				
F7401R	47	29	5.62	3.5	6.83					15	2.0				

Ventilation	on forcée IC 4	16						I _{2N,P}	υ / I ₀			
EZ401B	47	2,9	5,62	3,5	6,83			1,5	2,0			
EZ402B	60	5,1	7,88	6,4	9,34			1,1	1,5			
EZ404B	78	8	9,98	10,5	12				1,2	1,7		
EZ501B	68	4,5	6,7	5,7	7,5			1,3	1,9			
EZ502B	72	8,2	11,4	10,5	13,4				1,0	1,5		
EZ503B	84	10,4	13,5	14,8	15,9					1,3	1,9	
EZ701B	76	7,5	10,6	10,2	12,4				1,1	1,6		
EZ702B	82	12,5	16,7	19,3	22,1						1,4	

5.4 Accessoires

Pour tous renseignements complémentaires sur les accessoires disponibles, voir les chapitres suivants.

5.4.1 Technique de sécurité

ASP 5001 - Couple déconnecté en toute sécurité

Information

Le servo-variateur est livré dans l'exécution standard sans technique de sécurité. Si vous souhaitez un servovariateur avec technique de sécurité intégrée, vous devez commander cette dernière avec le servovariateur. Les modules de sécurité font partie intégrante des servo-variateurs et ne doivent en aucun cas être modifiés.

Disponible avec le modèle standard.

Module optionnel pour réaliser la fonction de sécurité Safe Torque Off (STO) intégrée.

5.4.2 Communication

Câble de connexion IGB

Câble pour le couplage de l'interface X3A ou X3B sur la face avant du convertisseur pour IGB, CAT5e, magenta, connecteur mâle 45°. Les modèles suivants sont disponibles :

N° ID 49855 : 0,4 m. N° ID 49856 : 2 m.

Câbles de connexion à l'ordinateur personnel

Nº ID 49857

Câble pour le couplage de l'interface X3A ou X3B à l'ordinateur personnel, CAT5e, bleu, 5 m.

Adaptateur Ethernet USB 2.0

N° ID 49940

Adaptateur pour le couplage d'Ethernet sur un port USB.

Module de communication CANopen DS-301 CAN 5000

N° ID 44574

Accessoire pour le couplage du bus CAN.

Module de communication PROFIBUS DP-V1 DP 5000

N° ID 44575 Accessoire pour le couplage de PROFIBUS DP-V1.

Module de communication EtherCAT ECS 5000

N° ID 49014 Accessoire pour le couplage de EtherCAT (CANopen over EtherCAT).

Câbles EtherCAT

Câble patch Ethernet, CAT5e, jaune. Les modèles suivants sont disponibles : N° ID 49313 : longueur 0,25 m env. N° ID 49314 : longueur 0,5 m env.

Module de communication PROFINET PN 5000

N° ID 53893 Accessoire pour le couplage de PROFINET.

5.4.3 Module de borne

Module de borne standard SEA 5001

N° ID 49576

Bornes:

- 2 entrées analogiques
- 2 sorties analogiques
- 5 entrées numériques
- 2 sorties numériques

Module de borne avancé XEA 5001

N° ID 49015

Bornes:

- 3 entrées analogiques
- 2 sorties analogiques
- 13 entrées numériques
- 10 sorties numériques

Encodeurs / Interfaces:

- Encodeur incrémental TTL (simulation et analyse)
- Interface impulsion/direction (simulation et analyse)
- Encodeur SSI (simulation et analyse)

Câble de raccordement SSI/TTL X120

Nº ID 49482

Câble de raccordement entre l'interface TTL X120 sur le servo-variateur SD6 (sur le module de borne RI6 ou XI6) et l'interface X301 sur le boîtier adaptateur LA6 pour la transmission des signaux de capteur à effet Hall. 0,3 m.

Module de borne résolveur REA 5001

N° ID 49854

Bornes:

- 2 entrées analogiques
- 2 sorties analogiques
- 5 entrées binaires
- 2 sorties binaires

Encodeurs / Interfaces :

- Résolveur
- Encodeur EnDat 2.1 sin/cos
- Encodeur incrémental TTL (simulation et analyse)
- Encodeur SSI (simulation et analyse)
- Interface impulsion/direction (simulation et analyse)

Les câbles résolveur qui étaient branchés à un POSIDYN SDS 4000 peuvent être raccordés à la borne X140 du REA 5001 via l'adaptateur résolveur (de 9 à 15 pôles) compris dans la livraison.

5.4.4 Résistance de freinage

Outre les convertisseurs, STOBER propose des résistances de freinage, décrites ci-dessous, de construction et de classe de puissance différentes. Au moment de votre choix, tenez compte des résistances de freinage minimales admissibles indiquées dans les caractéristiques techniques de chaque convertisseur.

5.4.4.1 Résistance tubulaire fixe FZMU, FZZMU

Туре	FZ	ZMU 400×6	55	FZZMU 400×65				
Nº ID	49010	55445	55446	53895	55447	55448		
SDS 5007A	Χ	_	_	_	_	_		
SDS 5008A	Χ	_	_	_	_	_		
SDS 5015A	Χ	_	_	_	_	_		
SDS 5040A	(X)	_	_	Χ	_	_		
SDS 5075A	(X)	_	_	Χ	_	_		
SDS 5110A	(—)	Χ	_	(X)	Χ	_		
SDS 5150A	(—)	Χ	_	(X)	Χ	_		
SDS 5220A	(—)	(X)	Χ	(—)	(X)	Χ		
SDS 5370A	(—)	(X)	X	(—)	(X)	Х		
SDS 5450A	(—)	(X)	Χ	(—)	(X)	Χ		

Tab. 31: Affectation de la résistance de freinage FZMU, FZZMU – Convertisseurs SDS 5000

X Recommandé

(X) Possible

(—) Raisonnable sous condition

Impossible

Propriétés

Spécification	FZMU 400×65			FZZMU 400×65		
Nº ID	49010	55445	55446	53895	55447	55448
Туре	Résista	ance tubula	ire fixe	Résista	ance tubula	ire fixe
Résistance [Ω]	100 ±10 %	22 ±10 %	15 ±10 %	47 ±10 %	22 ±10 %	15 ±10 %
Dérive de température	±10 %		±10 %			
Puissance [W]	600		1200			
Const. temps therm. τ_{th} [s]		40		40		
Puissance d'impulsion pour < 1 s [kW]		18		36		
U _{max} [V]		848		848		
Poids sans emballage [g]	2200		2200 4170			
Degré de protection	IP20		IP20			
Marquage	cU	Rus, CE, Uk	CA	cURus, CE, UKCA		CA

Tab. 32: Spécification FZMU, FZZMU

Dimensions

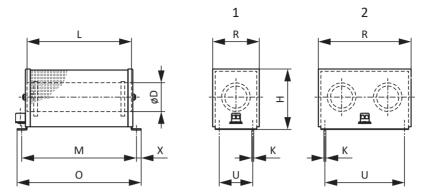


Fig. 3: Croquis coté FZMU (1), FZZMU (2)

Dimension	F.	FZMU 400×65		FZZMU 400×65		65	
Nº ID	49010	49010 55445 55446		53895	55447	55448	
LxD		400 × 65			400 × 65		
Н	120			120			
K	6,5 × 12			6,5 × 12			
M	430			426			
0		485			485		
R	92			185			
U	64			64 150		150	
X	10			10			

Tab. 33: Dimensions FZMU, FZZMU [mm]

5.4.4.2 Résistance plane GVADU, GBADU

Туре	GVADU 210×20	GBADU 265×30	GBADU 405×30	GBADU 335×30	GBADU 265×30
Nº ID	55441	55442	55499	55443	55444
SDS 5007A	Χ	Χ	Χ	_	_
SDS 5008A	Χ	Χ	Х	_	_
SDS 5015A	Χ	Χ	Х	_	_
SDS 5040A	(X)	(X)	(X)	Χ	_
SDS 5075A	(X)	(X)	(X)	Х	_
SDS 5110A	(—)	(—)	(—)	(X)	X
SDS 5150A	(—)	(—)	(—)	(X)	Х
SDS 5220A	(—)	(—)	(—)	(—)	(X)
SDS 5370A	(—)	(—)	(—)	(—)	(X)
SDS 5450A	(—)	(—)	(—)	(—)	(X)

Tab. 34: Affectation de la résistance de freinage GVADU, GBADU – Convertisseurs SDS 5000

X Recommandé

(X) Possible

(—) Raisonnable sous condition

Impossible

Propriétés

Spécification	GVADU 210×20	GBADU 265×30	GBADU 405×30	GBADU 335×30	GBADU 265×30	
Nº ID	55441	55442	55499	55443	55444	
Туре	Résistance plane					
Résistance [Ω]	100 ±10 %	100 ±10 %	100 ±10 %	47 ±10 %	22 ±10 %	
Dérive de température	±10 %	±10 %	±10 %	±10 %	±10 %	
Puissance [W]	150	300	500	400	300	
Const. temps therm. τ_{th} [s]	60	60	60	60	60	
Puissance d'impulsion pour < 1 s	3,3	6,6	11	8,8	6,6	
[kW]						
U _{max} [V]	848	848	848	848	848	
Exécution de câble	Radox	FEP	FEP	FEP	FEP	
Longueur de câble [mm]	500	1500	500	1500	1500	
Section de conducteur [AWG]	18/19	14/19	14/19	14/19	14/19	
	(0,82 mm ²)	(1,9 mm²)	(1,9 mm²)	(1,9 mm ²)	(1,9 mm²)	
Poids sans emballage [g]	300	930	1410	1200	930	
Degré de protection	IP54	IP54	IP54	IP54	IP54	
Marquage		cl	URus, CE, UKC	A		

Tab. 35: Spécification GVADU, GBADU

Dimensions

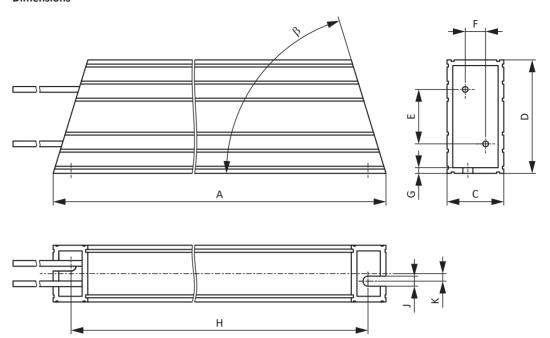


Fig. 4: Croquis coté GVADU, GBADU

Dimension	GVADU 210×20	GBADU 265×30	GBADU 405×30	GBADU 335×30	GBADU 265×30
Nº ID	55441	55442	55499	55443	55444
A	210	265	405	335	265
Н	192	246	386	316	246
С	20	30	30	30	30
D	40	60	60	60	60
E	18,2	28,8	28,8	28,8	28,8
F	6,2	10,8	10,8	10,8	10,8
G	2	3	3	3	3
K	2,5	4	4	4	4
J	4,3	5,3	5,3	5,3	5,3
β	65°	73°	73°	73°	73°

Tab. 36: Dimensions GVADU, GBADU [mm]

5.4.4.3 Résistance fixe de grille en acier FGFKU

Туре	FGFKU 3100502	FGFKU 3100502	FGFKU 3111202	FGFKU 3121602
Nº ID	55449	55450	55451	53897
SDS 5110A	Х	_	_	_
SDS 5150A	X	_	_	_
SDS 5220A	(X)	X	X	X
SDS 5370A	(X)	X	X	X
SDS 5450A	(X)	X	X	X

Tab. 37: Affectation de la résistance de freinage FGFKU – Convertisseurs SDS 5000

X Recommandé

(X) Possible

Impossible

Propriétés

Spécification	FGFKU 3100502	FGFKU 3100502	FGFKU 3111202	FGFKU 3121602		
Nº ID	55449	55450	55451	53897		
Туре	Résistance fixe de grille en acier					
Résistance [Ω]	22 ±10 %	15 ±10 %	15 ±10 %	15 ±10 %		
Dérive de température	±10 %	±10 %	±10 %	±10 %		
Puissance [W]	2500	2500	6000	8000		
Const. temps therm. τ_{th} [s]	30	30	20	20		
Puissance d'impulsion pour < 1 s [kW]	50	50	120	160		
U _{max} [V]	848	848	848	848		
Poids sans emballage [g]	7500	7500	12000	18000		
Degré de protection	IP20	IP20	IP20	IP20		
Marquage	cURus, CE, UKCA					

Tab. 38: Spécification FGFKU

Dimensions

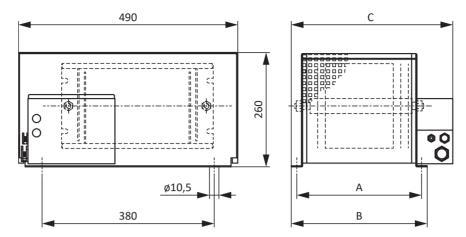


Fig. 5: Croquis coté FGFKU

Dimension	FGFKU 3100502	FGFKU 3100502	FGFKU 3111202	FGFKU 3121602
Nº ID	55449	55450	55451	53897
A	270	270	370	570
В	295	295	395	595
С	355	355	455	655

Tab. 39: Dimensions FGFKU [mm]

5.4.4.4 Résistance de freinage arrière RB 5000

Туре	RB 5022	RB 5047	RB 5100
Nº ID	45618	44966	44965
SDS 5007A	_	_	X
SDS 5008A	_	_	X
SDS 5015A	_	_	Χ
SDS 5040A	_	X	(X)
SDS 5075A	_	X	(X)
SDS 5110A	X	_	_
SDS 5150A	X	_	_

Tab. 40: Affectation de la résistance de freinage RB 5000 – Convertisseurs SDS 5000

X Recommandé

(X) Possible

Impossible

Propriétés

Spécification	RB 5022	RB 5047	RB 5100
Nº ID	45618	44966	44965
Résistance [Ω]	22 ±10 %	47 ±10 %	100 ±10 %
Dérive de température	±10 %	±10 %	±10 %
Puissance [W]	100	60	60
Const. temps therm. τ_{th} [s]	8	8	8
Puissance d'impulsion pour < 1 s [kW]	1,5	1,0	1,0
U _{max} [V]	800	800	800
Poids sans emballage [g]	640	460	440
Exécution de câble	Radox	Radox	Radox
Longueur de câble [mm]	250	250	250
Section de conducteur [AWG]	18/19	18/19	18/19
	(0,82 mm²)	(0,82 mm²)	(0,82 mm²)
Couple max. goujon fileté M5 [Nm]	5	5	5
Degré de protection	IP40	IP40	IP40
Marquage	cURus, CE, UKCA	cURus, CE, UKCA	cURus, CE, UKCA

Tab. 41: Spécification RB 5000

Dimensions

Dimension	RB 5022	RB 5047	RB 5100
Nº ID	45618	44966	44965
Hauteur	300	300	300
Largeur	94	62	62
Profondeur	18	18	18
Le plan de perçage correspond à la taille	Taille 2	TA 1	Tailles 0 et 1

Tab. 42: Dimensions RB 5000 [mm]

5.4.5 Self

Pour les caractéristiques techniques relatives aux selfs de sortie correspondants, consultez les chapitres suivants.

5.4.5.1 Self de sortie TEP

Des selfs de sortie sont nécessaires pour le raccordement de servo-variateurs des tailles 0 à 2 à partir d'une longueur de câble > 50 m, afin de réduire les impulsions parasites et de ménager le système d'entraînement.

Information

Les caractéristiques techniques ci-dessous s'appliquent pour une fréquence du champ tournant de 200 Hz. Vous atteindrez cette fréquence par exemple avec un moteur à quatre paires de pôles et à la vitesse de rotation nominale de 3000 tr/min. Pour les fréquences du champ tournant supérieures, respectez dans tous les cas la réduction de charge indiquée. Par ailleurs, tenez également compte de la dépendance de la cadence.

Propriétés

Spécification	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41			
Nº ID	53188	53189	53190			
Plage de tension		3×0 à 480 V_{CA}				
Gamme de fréquence		0 – 200 Hz				
Courant nominal I _{N,MF} à 4 kHz	4 A	17,5 A	38 A			
Courant nominal I _{N,MF} à 8 kHz	3,3 A	15,2 A	30,4 A			
Longueur de câble moteur		100 m				
max. admissible avec						
self de sortie						
Température		40 °C				
ambiante max. $\vartheta_{\scriptscriptstyle amb,max}$						
Degré de protection		IP00				
Pertes d'enroulement	11 W	29 W	61 W			
Pertes de fer	25 W	16 W	33 W			
Raccordement	Borne à vis					
Section de conducteur max.	10 mm ²					
UL Recognized	Oui					
Component (CAN; USA)						
Marquage		cURus, CE				

Tab. 43: Spécification TEP

Dimensions

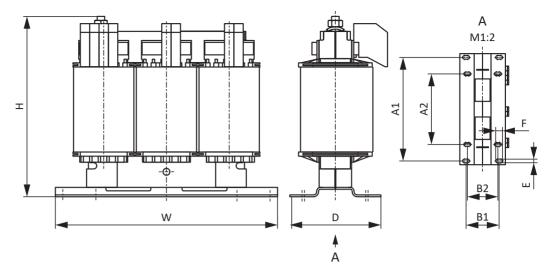


Fig. 6: Croquis coté TEP

Dimension	TEP3720-0ES41	TEP3820-0CS41	TEP4020-0RS41
Hauteur H [mm]	153 max.	153 max.	180 max.
Largeur W [mm]	178	178	219
Profondeur D [mm]	73	88	119
Écart vertical –	166	166	201
Trous de fixation A1 [mm]			
Écart vertical –	113	113	136
Trous de fixation A2 [mm]			
Écart horizontal –	53	68	89
Trous de fixation B1 [mm]			
Écart horizontal –	49	64	76
Trous de fixation B2 [mm]			
Trous percés – Profondeur E [mm]	5,8	5,8	7
Trous percés – Largeur F [mm]	11	11	13
Raccord à vis – M	M5	M5	M6
Poids sans emballage [g]	2900	5900	8800

Tab. 44: Dimensions et poids TEP

5.4.6 Module de freinage et blindage CEM

Module de freinage BRS 5001

N° ID 56519

Module de freinage pour convertisseur de la gamme SDS 5000.

Pièce accessoire permettant le pilotage direct de deux freins (24 V_{DC}) au maximum et – pour convertisseurs jusqu'à la taille 2 – la connexion blindée du câble de puissance.

À monter sur le carter de base.

Y compris câble de raccordement vers l'appareil de base et la borne de blindage.

Blindage CEM EM 5000

N° ID 44959

Blindage CEM pour convertisseurs de la 5e génération.

Pièce accessoire pour la connexion blindée du câble de puissance pour convertisseurs jusqu'à la taille 2.

À monter sur le boîtier de base.

Borne de blindage incluse.

Blindage CEM EM6A3

Nº ID 56521

Blindage CEM pour les servo-variateurs des gammes MDS 5000, SDS 5000 et SD6.

Pièce accessoire pour la connexion blindée du câble de puissance pour les servo-variateurs de taille 3.

À monter sur le boîtier de base.

Borne de blindage incluse.

Le cas échéant, vous pouvez poser en outre le blindage du câble de la résistance de freinage et du couplage du circuit intermédiaire sur la tôle de blindage.

5.4.7 Commutateur d'axe

Commutateur d'axe quadruple POSISwitch AX 5000

N° ID 49578

Commutateur d'axe pour convertisseurs des gammes MDS 5000 et SDS 5000.

Permet d'exploiter jusqu'à quatre moteurs brushless synchrones sur un convertisseur.

Câble de raccordement LA6 / AX 5000

Câble de raccordement entre le convertisseur et le commutateur d'axe POSISwitch AX 5000.

Les modèles suivants sont disponibles :

N° ID 45405 : 0,5 m. N° ID 45386 : 2,5 m.

5.4.8 Module de pile d'encodeur

Absolute Encoder Support AES

N° ID 55452

Module de pile pour la mise en mémoire tampon de la tension d'alimentation en cas d'utilisation d'encodeurs inductifs EnDat 2.2 numériques avec étage Multiturn sauvegardé par pile, par exemple EBI1135ou EBI135. Une pile est fournie.

Pile amovible AES

N° ID 55453 Pile amovible pour le module de pile AES.

5.4.9 Mémoire de données amovible

Mémoire de données amovible Paramodul

Compris dans le modèle standard.

N° ID 55464

Module de mémoire pour la configuration et les paramètres.

5.5 Informations supplémentaires

5.5.1 Directives et normes

Les directives et normes européennes suivantes s'appliquent aux convertisseurs :

- Directive Machines 2006/42/CE
- Directive Basse tension 2014/35/UE
- Directive CEM 2014/30/UE
- EN 61326-3-1:2008
- EN 61800-3:2012-09 et 1:2014-02
- EN 61800-5-1:2008-04 et 1:2010-04
- EN 61800-5-2:2016-04
- EN 50178:1997

5.5.2 Symboles et marquages

Symbole de mise à la terre

Symbole de mise à la terre conformément à CEI 60417, symbole 5019.

Marquage sans plomb RoHS

Marquage conformément à la Directive RoHS 2011-65-UE sur la limitation des substances dangereuses.

Marquage CE

Auto-déclaration du fabricant : le produit satisfait aux directives UE.

Marquage UKCA

Autodéclaration du fabricant : le produit est conforme aux directives du Royaume-Uni.

Marque UL

Ce produit figure sur la liste UL pour les États-Unis et le Canada.

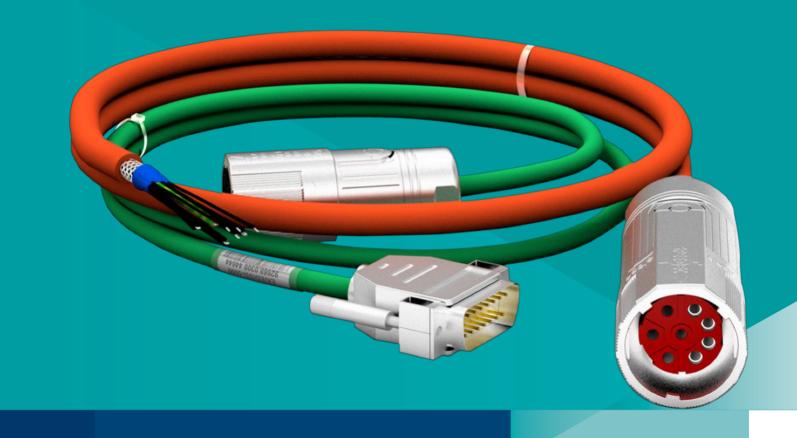
Des échantillons représentatifs de ce produit ont fait l'objet d'une évaluation UL et satisfont aux normes applicables.

Marquage UL pour les composants reconnus

Ces composants ou ce matériel sont certifiés UL. Des échantillons représentatifs de ce produit ont fait l'objet d'une évaluation UL et satisfont aux exigences applicables.

5.5.3 Autres documentations

Vous trouverez d'autres documentations relatives au produit à l'adresse http://www.stoeber.de/fr/download


Saisissez le nº ID de la documentation dans le champ <u>Critère de recherche</u>.

Documentation	ID
Manuel de planification servoconvertisseur SDS 5000	442278

6 Technique de raccordement

Table des matières

6.1	Aperçu		170
6.2	Conver	tions applicables aux câbles	171
6.3	Câbles	de puissance	171
	6.3.1	Affectation du moteur	
	6.3.2	Description du raccordement	173
6.4	Câbles	d'encodeur	176
	6.4.1	Encodeurs EnDat 2.1/2.2 numériques	176
	6.4.2	Encodeurs EnDat 2.1 sin/cos	179
	6.4.3	Résolveur	181
6.5	One Ca	ble Solution EnDat 3	182
	6.5.1	Affectation du moteur	
	6.5.2	Description du raccordement	184
66	Autres	documentations	185

Technique de raccordement

6.1 Aperçu

Technique de raccordement adaptée aux servovariateurs STOBER

Caractéristiques

- Sollicitation de torsion ±30°/m
- Résistante à la flexion
- Résistante à l'huile
- Résistante aux produits chimiques

Une absence de coordination entre le servo-variateur, le câble et le moteur peut entraîner des pics de tension inadmissibles dans le système d'entraînement qui risquent d'endommager principalement le moteur. Par ailleurs, les prescriptions légales de la directive (CEM) 2014/30/UE doivent être respectées.

La combinaison de moteurs STOBER, câbles STOBER et servo-variateurs STOBER vous permet de respecter les prescriptions légales.

STOBER propose un assortiment de câbles adaptés. Les câbles se déclinent en différentes longueurs et sont connectorisés des deux côtés.

L'utilisation de câbles de raccordement inadaptés peut engendrer la nullité de la garantie.

6.2 Conventions applicables aux câbles

Dans les descriptions des raccordements des câbles, les couleurs des fils sont abrégées et utilisées comme suit.

Couleurs de câbles

BK:	BLACK (noir)	PK:	PINK (rose)
BN:	BROWN (marron)	RD:	RED (rouge)
BU:	BLUE (bleu)	VT:	VIOLET (violet)
GN:	GREEN (vert)	WH:	WHITE (blanc)
GY:	GREY (gris)	YE:	YELLOW (jaune)
OG:	ORANGE (orange)		

Conventions de représentation

Fil bicolore :	WHYE	WHITEYELLOW (blanc et jaune)
Fil unicolore :	BK/BN	BLACK/BROWN (noir ou marron)

6.3 Câbles de puissance

Les moteurs brushless synchrones STOBER sont équipés en série de connecteurs enfichables.

STOBER propose les câbles adaptés dans différentes longueurs, sections de conducteur et tailles de connecteur.

Les câbles sont disponibles dans les longueurs 2,5 m, 5,0 m, 7,5 m, 10,0 m, 12,5 m, 15,0 m, 18,0 m, 20,0 m, 25,0 m, 30,0 m.

Autres longueurs sur demande.

6.3.1 Affectation du moteur

Les moteurs STOBER sont équipés en série de câbles présentant une section minimale. Certaines applications peuvent toutefois exiger des sections de conducteur supérieures. C'est pourquoi vous devez également tenir compte des points ci-dessous pour le dimensionnement du câble :

- Courant à l'arrêt I₀ du moteur
- Intensité maximale admissible des conducteurs
- Longueur de câble
- Spécifications des bornes du servo-variateur ou du self de sortie
- Taille du connecteur moteur

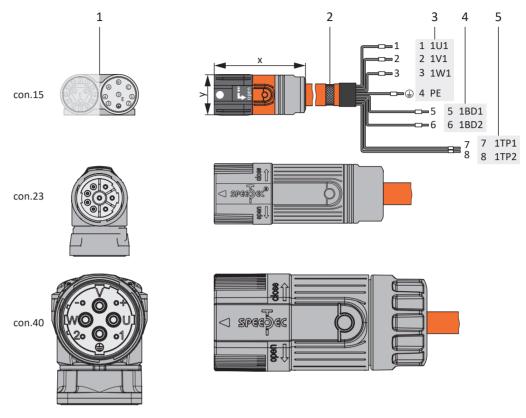
Moteurs EZ - Refroidissement par convection IC 410

	n _N 2000 tr/min		n _N 3000 tr/min		n _N 4500 tr/min			n _N 6000 tr/min				
	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²
EZ202U	_	_	_	_	_	_	_	_	_	40	con.15	1,0
EZ203U	_	_	_	_	_	_	_	_	_	40	con.15	1,0
EZ301U	_	_	_	40	con.15	1,0	_	_	_	40	con.15	1,0
EZ302U	_	_	_	86	con.15	1,0	_	_	_	42	con.15	1,0
EZ303U	_	_	_	109	con.15	1,0	_	_	_	55	con.15	1,0
EZ401U	_	_	_	96	con.23	1,0/1,5	_	_	_	47	con.23	1,0/1,5
EZ402U	_	_	_	94	con.23	1,0/1,5	_	_	_	60	con.23	1,0/1,5
EZ404U	_	_	_	116	con.23	1,0/1,5	_	_	_	78	con.23	1,0/1,5
EZ501U	_	_	_	97	con.23	1,0/1,5	_	_	_	68	con.23	1,0/1,5
EZ502U	_	_	_	121	con.23	1,0/1,5	_	_	_	72	con.23	1,0/1,5
EZ503U	_	_	_	119	con.23	1,0/1,5	_	_	_	84	con.23	1,0/1,5
EZ505U	_	_	_	141	con.23	1,0/1,5	103	con.23	1,5	_	_	_
EZ701U	_	_	_	95	con.23	1,0/1,5	_	_	_	76	con.23	1,0/1,5
EZ702U	_	_	_	133	con.23	1,0/1,5	_	_	_	82	con.23	2,5
EZ703U	_	_	_	122	con.23	1,5	99	con.23	2,5	_	_	_
EZ705U	_	_	_	140	con.40	2,5	106	con.40	4,0	_	_	_
EZ802U	_	_	_	136	con.40	4,0	90	con.40	4,0/6,0	_	_	_
EZ803U	_	_	_	131	con.40	6,0	_	_	_	_	_	_
EZ805U	142	con.40	10,0	_	_	_	_	_	_	_	_	_

Tab. 1: Taille du connecteur enfichable et section minimale, moteurs brushless synchrones EZ avec refroidissement par convection

Indication de la section minimale : la section inférieure est disponible à partir de Q2/22 et s'applique aux longueurs de câble jusqu'à 12,5 m maximum.

Moteurs EZ – Ventilation forcée IC 416


	n _N 2000 tr/min		ı	n _N 3000 tr/mi	n	n _N 4500 tr/min			n _N 6000 tr/min			
	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mi- nimale mm²
EZ401B	_	_	_	96	con.23	1,0/1,5	_	_	_	47	con.23	1,0/1,5
EZ402B	_	_	_	94	con.23	1,0/1,5	_	_	_	60	con.23	1,0/1,5
EZ404B	_	_	_	116	con.23	1,0/1,5	_	_	_	78	con.23	1,0/1,5
EZ501B	_	_	_	97	con.23	1,0/1,5	_	_	_	68	con.23	1,0/1,5
EZ502B	_	_	_	121	con.23	1,0/1,5	_	_	_	72	con.23	1,5
EZ503B	_	_	_	119	con.23	1,0/1,5	_	_	_	84	con.23	2,5
EZ505B	_	_	_	141	con.23	1,5	103	con.23	2,5	_	_	_
EZ701B	_	_	_	95	con.23	1,0/1,5	_	_	_	76	con.23	1,0/1,5
EZ702B	_	_	_	133	con.23	1,0/1,5	_	_	_	82	con.23	2,5/4,0
EZ703B	_	_	_	122	con.23	2,5	99	con.23	4,0	_	_	_
EZ705B	_	_	_	140	con.40	4,0	106	con.40	6,0	_	_	_
EZ802B	_	_	_	136	con.40	4,0/6,0	90	con.40	10,0	_	_	_
EZ803B	_	_	_	131	con.40	10,0	_	_	_	_	_	_
EZ805B	142	con.40	10,0	_	_	_	_	_	_	_	_	_

Tab. 2: Taille du connecteur enfichable et section minimale, moteurs brushless synchrones EZ avec ventilation forcée

6.3.2 Description du raccordement

Selon la taille du connecteur du moteur, les câbles de puissance sont disponibles dans les modèles suivants :

- Fermeture rapide pour pour con.15
- Fermeture rapide speedtec pour con.23 et con.40

- 1 Connecteurs enfichables
- 2 Câble de puissance STOBER, blindage du câble
- 3 Raccordement borne X20, moteur
- 4 Raccordement borne X2/X5, frein
- 5 Raccordement borne X2, sonde de température

Information

Le modèle du raccordement de blindage du câble côté variateur dépend de la gamme de servo-variateur.

Raccordement	TA 0 à TA 2	TA 3
Sans self de sortie	50 m, blindé	100 m, blindé
Avec self de sortie	100 m, blindé	_

Tab. 3: Longueur maximale du câble de puissance [m]

Câbles de puissance - Connecteurs enfichables con.15

		М	oteur (1)	Câble (2)	Servo-variateur (3) – (5)			
Schéma de connexions i teur		Broche	Désignation	Int. au moteur Couleur de fil	N° fil/ Couleur fil	Broche X20	Broche X2/X5	Broche X2
B		Α	1U1	ВК	1	1	_	_
	3	В	1V1	BU	2	2	_	_
11 -	10	С	1W1	RD	3	3	_	_
\bigcirc 3 \oplus 20		1	1TP1	BK/RD ^{a)}	7	_	_	7
		2	1TP2	WH ^{a)}	8	_	_	8
		3	1BD1	RD	5	_	5	_
		4	1BD2	BK	6	_	6	_
		5	_	_	_	_	_	_
			PE	GNYE	GNYE	4	_	_
		Carter	Blindage	_	_	Raccorde- ment de blindage	_	_

Tab. 4: Affectation des broches câble de puissance con.15

a) Couleur en fonction du type de sonde de température (PTC/Pt1000) indiquée sur la plaque signalétique du moteur.

Longueur x [mm]	Diamètre y [mm]
42	18,7

Tab. 5: Dimensions connecteur, con.15

Câbles de puissance – Connecteurs enfichables con.23

	Moteur (1)					Servo-variateur (3) – (5)		
Schéma des connexions moteur	Broche	Désignation	Int. au moteur Couleur de fil	N° fil/ Couleur fil	Broche X20	Broche X2/X5	Broche X2	
	1	1U1	ВК	1	1	_	_	
	3	1V1	BU	2	2	_	_	
	4	1W1	RD	3	3	_	_	
	Α	1BD1	RD	5	_	5	_	
A	В	1BD2	BK	6	_	6	_	
	С	1TP1	BK/RD ^{a)}	7	_	_	7	
	D	1TP2	WH ^{a)}	8	_	_	8	
		PE	GNYE	GNYE	4	_	_	
	Carter	Blindage	-	-	Raccorde- ment de blindage	_	_	

Tab. 6: Affectation des broches câble de puissance con.23

a) Couleur en fonction du type de sonde de température (PTC/Pt1000) indiquée sur la plaque signalétique du moteur.

Longueur x [mm]	Diamètre y [mm]
78	26

Tab. 7: Dimensions connecteur mâle, con.23

Câbles de puissance - Connecteurs enfichables con.40

	Moteur (1)					o-variateı (3) – (5)	ır
Schéma des connexions mo- teur	Broche	Désignation	Int. au moteur Couleur de fil	N° fil/ Couleur fil	Broche X20	Broche X2/X5	Broche X2
T	U	1U1	ВК	1	1	_	_
//-° © °+ \\	V	1V1	BU	2	2	_	_
	W	1W1	RD	3	3	_	_
20 0 1	+	1BD1	RD	5	_	5	_
	-	1BD2	BK	6	_	6	_
	1	1TP1	BK/RD ^{a)}	7	_	_	7
	2	1TP2	WH ^{a)}	8	_	_	8
		PE	GNYE	GNYE	4	_	_
	Carter	Blindage	_	_	Raccorde- ment de blindage	_	_

Tab. 8: Affectation des broches câble de puissance con.40

a) Couleur en fonction du type de sonde de température (PTC/Pt1000) indiquée sur la plaque signalétique du moteur.

Longueur x [mm]	Diamètre y [mm]
99	46

Tab. 9: Dimensions connecteur mâle, con.40

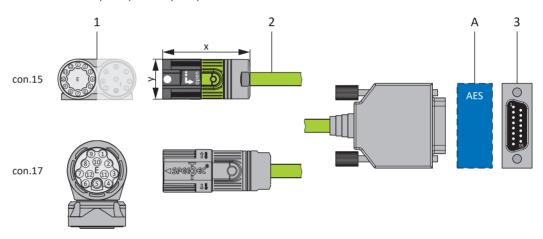
6.4 Câbles d'encodeur

Les moteurs STOBER sont équipés en série de systèmes d'encodeur et de connecteurs enfichables.

STOBER propose les câbles adaptés dans différentes longueurs, sections de conducteur et tailles de connecteur.

Les câbles sont disponibles dans les longueurs 2,5 m, 5,0 m, 7,5 m, 10,0 m, 12,5 m, 15,0 m, 18,0 m, 20,0 m, 25,0 m, 30,0 m.

Autres longueurs sur demande.


6.4.1 Encodeurs EnDat 2.1/2.2 numériques

Les câbles d'encodeur adéquats sont décrits ci-dessous.

6.4.1.1 Description du raccordement

Les câbles d'encodeur sont disponibles dans les modèles suivants en fonction de la taille du connecteur du moteur :

- Fermeture rapide pour pour con.15
- Fermeture rapide speedtec pour pour con.17

- 1 Connecteurs enfichables
- 2 Câble d'encodeur STOBER
- A Module de pile optionnel Absolute Encoder Support (AES)
- 3 D-sub X4/X140

Câbles d'encodeur - Connecteurs enfichables con.15

Avec les encodeurs inductifs EnDat 2.2 numériques « EBI 1135 » et « EBI 135 » avec fonction Multiturn, l'alimentation en tension est mise en mémoire tampon. Dans ce cas, les broches 2 et 3 du moteur sont occupées par la batterie tampon U_{2BAT} . En ce qui concerne ces encodeurs, notez que le câble d'encodeur ne doit pas être branché à l'interface encodeur du servo-variateur, mais plutôt au module de pile AES.

	Mo	Câble (2)	Servo-variateur (3)		
Schéma des connexions	Broche	Désignation	Couleur de fil	Couleur de fil	Broche X4/X140
10 ¹² 01 02	1	Clock +	VT	YE	8
	2	U ₂ Sense	BNGN	PK	12
10 E		U _{2BAT +} ¹	BU		
	3	_	_	GY	3
80 ~ 5//		U _{2BAT} - ²	WH		
70 6	4	_	_	_	_
	5	Data –	PK	BN	13
	6	Data +	GY	WH	5
	7	_	_	_	_
	8	Clock -	YE	GN	15
	9	_	_	_	_
	10	0 V GND	WHGN	BU	2
	11	_	_	_	_
	12	U_2	BNGN	RD	4
	Carter	Blindage	_	_	Carter

Tab. 10: Brochage câble d'encodeur con.15, EnDat 2.1/2.2 numérique

Longueur x [mm]	Diamètre y [mm]
42	18,7

Tab. 11: Dimensions connecteur, con.15

¹ Important pour les encodeurs EBI seulement

² Important pour les encodeurs EBI seulement

Câbles d'encodeur - Connecteurs enfichables con.17

Avec les encodeurs inductifs EnDat 2.2 numériques « EBI 1135 » et « EBI 135 » avec fonction Multiturn, l'alimentation en tension est mise en mémoire tampon. Dans ce cas, les broches 2 et 3 du moteur sont occupées par la batterie tampon U_{2BAT} . En ce qui concerne ces encodeurs, notez que le câble d'encodeur ne doit pas être branché à l'interface encodeur du servo-variateur, mais plutôt au module de pile AES.

	Mo	Câble (2)	Servo-variateur (3)		
Schéma des connexions	Broche	Désignation	Couleur de fil	Couleur de fil	Broche X4/X140
	1	Clock +	VT	YE	8
(90)	2	U ₂ Sense	BNGN	PK	12
(8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		U _{2BAT+} 3	BU		
(10/12-11/3))	3	_	_	GY	3
		U _{2BAT} -	WH		
	4	_	_	_	_
	5	Data –	PK	BN	13
	6	Data +	GY	WH	5
	7	_	_	_	_
	8	Clock -	YE	GN	15
	9	_	_	_	_
	10	0 V GND	WHGN	BU	2
	11	_	_	_	_
	12	U_2	BNGN	RD	4
	Carter	Blindage	_	_	Carter

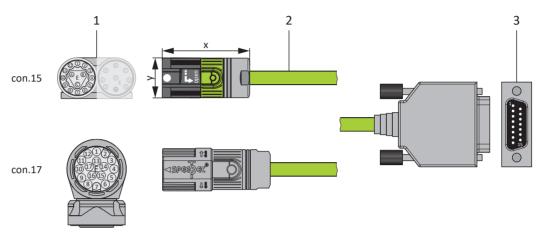
Tab. 12: Brochage câble d'encodeur con.17, EnDat 2.1/2.2 numérique

Longueur x [mm]	Diamètre y [mm]
56	22

Tab. 13: Dimensions connecteur mâle, con.17

³ Important pour les encodeurs EBI seulement

⁴Important pour les encodeurs EBI seulement


6.4.2 Encodeurs EnDat 2.1 sin/cos

Les câbles d'encodeur adéquats sont décrits ci-dessous.

6.4.2.1 Description du raccordement

Les câbles d'encodeur sont disponibles dans les modèles suivants en fonction de la taille du connecteur du moteur :

- Fermeture rapide pour pour con.15
- Fermeture rapide speedtec pour pour con.17

- 1 Connecteurs enfichables
- 2 Câble d'encodeur STOBER
- 3 D-Sub X140

Information

Pour le raccordement de câbles Sin/Cos EnDat 2.1 STOBER à un connecteur mâle D-sub à 15 pôles avec sonde thermique du moteur intégrée, utilisez l'adaptateur d'interface AP6A02 (n° ID 56523) disponible séparément pour le guidage vers l'extérieur des fils de la sonde de température.

Câbles d'encodeur - Connecteurs enfichables con.15

Moteur (1)			Câble (2)	Servo-variateur (3)	
Schéma des	Broche	Désignation	Couleur de fil	Couleur de fil	Broche
connexions					X140
(12 O1 O2	1	U ₂ Sense	BU	GNRD	12
3	2	0 V Sense	WH	GNBK	10
A E B	3	U_2	BNGN	BNRD	4
9 C 5	4	Clock +	VT	WHBK	8
70 6	5	Clock -	YE	WHYE	15
	6	0 V GND	WHGN	BNBU	2
	7	B + (Sin +)	BUBK	RD	9
	8	B – (Sin –)	RDBK	OG	1
	9	Data +	GY	GY	5
	10	A+ (Cos+)	GNBK	GN	11
	11	A – (Cos –)	YEBK	YE	3
	12	Data –	PK	BU	13
	Α	1TP2	WH	BNGY	14
	В	1TP1	BK	BNYE	7
	С	_	_	_	_
	Carter	Blindage	_	_	Carter

Tab. 14: Brochage câble d'encodeur con.15, EnDat 2.1 sin/cos

Longueur x [mm]	Diamètre y [mm]
42	18,7

Tab. 15: Dimensions connecteur, con.15

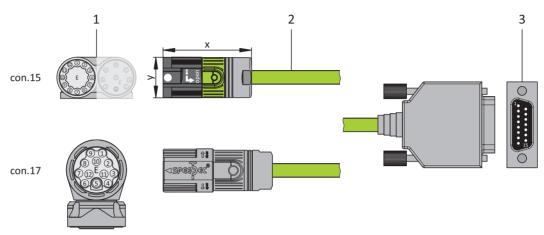
Câbles d'encodeur – Connecteurs enfichables con.17

Moteur (1)				Câble (2)	Servo-variateur (3)
Schéma des	Broche	Désignation	Couleur de fil	Couleur de fil	Broche
connexions					X140
	1	U ₂ Sense	BU	GNRD	12
(n/11) (13) (3) (n)	2	_	_	_	_
	3	_	_	_	_
026	4	0 V Sense	WH	GNBK	10
	5	1TP2	WH	BNGY	14
	6	1TP1	BK	BNYE	7
	7	U_2	BNGN	BNRD	4
	8	Clock +	VT	WHBK	8
	9	Clock -	YE	WHYE	15
	10	0 V GND	WHGN	BNBU	2
	11	_	_	_	_
	12	B + (Sin +)	BUBK	RD	9
	13	B - (Sin -)	RDBK	OG	1
	14	Data +	GY	GY	5
	15	A+ (Cos+)	GNBK	GN	11
	16	A – (Cos –)	YEBK	YE	3
	17	Data –	PK	BU	13
	Carter	Blindage	_	_	Carter

Tab. 16: Brochage câble d'encodeur con.17, EnDat 2.1 sin/cos

Longueur x [mm]	Diamètre y [mm]
56	22

Tab. 17: Dimensions connecteur mâle, con.17


6.4.3 Résolveur

Les câbles d'encodeur adéquats sont décrits ci-dessous.

6.4.3.1 Description du raccordement

Les câbles d'encodeur sont disponibles dans les modèles suivants en fonction de la taille du connecteur du moteur :

- Fermeture rapide pour pour con.15
- Fermeture rapide speedtec pour pour con.17

- 1 Connecteurs enfichables
- 2 Câble d'encodeur STOBER
- 3 D-sub X4/X140

Câbles d'encodeur - Connecteurs enfichables con.15

	Mo	Câble (2)	Servo-variateur (3)		
Schéma des connexions	Broche	Désignation	Couleur de fil	Couleur de fil	Broche X4/X140
10 02	1	S3 Cos +	BK	YE	3
71	2	S1 Cos –	RD	GN	11
10 E	3	S4 Sin +	BU	WH	1
	4	S2 Sin –	YE	BN	9
	5	1TP1	BK	RD	7
80 70 60 3	6	1TP2	WH	BU	14
	7	R2 Ref +	YEWH/ BKWH	GY	6
	8	R1 Ref -	RDWH	PK	2
	9	_	_	_	_
	10	_	_	_	_
	11	_	_	_	_
	12	_	_	_	_
	Carter	Blindage	_	_	Carter

Tab. 18: Brochage câble d'encodeur con.15, résolveur

Longueur x [mm]	Diamètre y [mm]
42	18,7

Tab. 19: Dimensions connecteur, con.15

Câbles d'encodeur - Connecteurs enfichables con.17

	Mo	Câble (2)	Servo-variateur (3)		
Schéma des connexions	Broche	Désignation	Couleur de fil	Couleur de fil	Broche X4/X140
	1	S3 Cos +	BK	YE	3
90	2	S1 Cos -	RD	GN	11
(3	S4 Sin +	BU	WH	1
(10/12-11/3))	4	S2 Sin –	YE	BN	9
	5	1TP1	BK	RD	7
	6	1TP2	WH	BU	14
	7	R2 Ref +	YEWH/ BKWH	GY	6
	8	R1 Ref –	RDWH	PK	2
	9	_	_	_	_
	10	_	_	_	_
	11	_	_	_	_
	12	_	_	_	_
	Carter	Blindage	_	_	Carter

Tab. 20: Brochage câble d'encodeur con.17, résolveur

Longueur x [mm]	Diamètre y [mm]
56	22

Tab. 21: Dimensions connecteur mâle, con.17

6.5 One Cable Solution EnDat 3

Les moteurs brushless synchrones STOBER sont équipés en série de connecteurs enfichables.

Pour un raccordement du moteur comme One Cable Solution (OCS) en combinaison avec l'encodeur En-Dat 3, vous avez besoin de câbles hybrides alliant la communication encodeur et la transmission de puissance dans un câble commun.

STOBER propose les câbles adaptés dans différentes longueurs, sections de conducteur et tailles de connecteur

Les câbles sont disponibles dans les longueurs 2,5 m, 5,0 m, 7,5 m, 10,0 m, 12,5 m, 15,0 m, 18,0 m, 20,0 m, 25,0 m, 30,0 m.

Autres longueurs sur demande.

Pour les applications avec une longueur de câble jusqu'à 12,5 m et des sections de conducteur de 1,0 ou 1,5 mm² ainsi qu'une pose sans mouvement, STOBER recommande les câbles hybrides OCS-Basic. Pour des longueurs plus importantes ou une pose dans des chemins de câbles en mouvement (p. ex. une chaîne porte-câbles), veuillez utiliser les câbles hybrides OCS-Advanced.

Information

Pour un raccordement One Cable Solution, utilisez exclusivement des câbles hybrides STOBER. L'utilisation de câbles inappropriés ou de raccordements mal réalisés peut provoquer des dommages consécutifs. Par conséquent, nous nous réservons, le cas échéant, le droit d'exclure les droits à la garantie.

6.5.1 Affectation du moteur

Les moteurs STOBER sont équipés en série de câbles présentant une section minimale. Certaines applications peuvent toutefois exiger des sections de conducteur supérieures. C'est pourquoi vous devez également tenir compte des points ci-dessous pour le dimensionnement du câble :

- Courant à l'arrêt Io du moteur
- Intensité maximale admissible des conducteurs
- Longueur de câble
- Spécifications des bornes du servo-variateur ou du self de sortie
- Taille du connecteur moteur

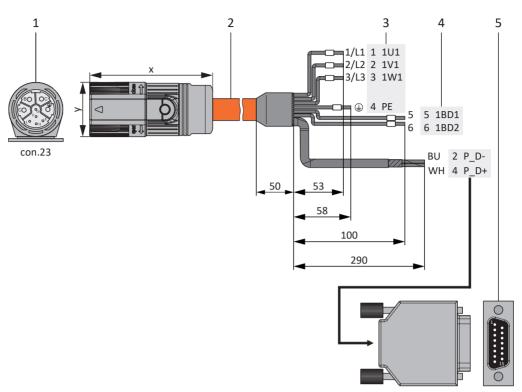
Moteurs EZ - Refroidissement par convection IC 410

		n _N 3000 tr/mii	ı		n _N 4500 tr/mi	n		n _N 6000 tr/mi	n
	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mini- male mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mini- male mm²	K _{EM} V/1000 tr/min	Taille conn. enfich.	Section mini- male mm²
EZ202U	_	_	_	_	_	_	40	con.23	1,0 / 1,5
EZ203U	_	_	_	_	_	_	40	con.23	1,0 / 1,5
EZ301U	40	con.23	1,0 / 1,5	_	_	_	40	con.23	1,0 / 1,5
EZ302U	86	con.23	1,0 / 1,5	_	_	_	42	con.23	1,0 / 1,5
EZ303U	109	con.23	1,0 / 1,5	_	_	_	55	con.23	1,0 / 1,5
EZ401U	96	con.23	1,0 / 1,5	_	_	_	47	con.23	1,0 / 1,5
EZ402U	94	con.23	1,0 / 1,5	_	_	_	60	con.23	1,0 / 1,5
EZ404U	116	con.23	1,0 / 1,5	_	_	_	78	con.23	1,0 / 1,5
EZ501U	97	con.23	1,0 / 1,5	_	_	_	68	con.23	1,0 / 1,5
EZ502U	121	con.23	1,0 / 1,5	_	_	_	72	con.23	1,0 / 1,5
EZ503U	119	con.23	1,0 / 1,5	_	_	_	84	con.23	1,0 / 1,5
EZ505U	141	con.23	1,0 / 1,5	103	con.23	1,5	_	_	_
EZ701U	95	con.23	1,0 / 1,5	_	_	_	76	con.23	1,0 / 1,5
EZ702U	133	con.23	1,0 / 1,5	_	_	_	82	con.23	2,5
EZ703U	122	con.23	1,5	99	con.23	2,5	_	_	_
EZ705U	140	con.23	2,5	_	_	_	_	_	_

Tab. 22: Taille du connecteur enfichable et section minimale, moteurs brushless synchrones EZ avec refroidissement par convection

Indication de la section minimale : la section inférieure est disponible à partir de Q2/22 et s'applique aux longueurs de câble jusqu'à 12,5 m maximum.

Moteurs EZ – Ventilation forcée IC 416


		n _N 3000 tr/mii	ı		n _N 4500 tr/mii	n		n _N 6000 tr/mi	n
	K_{EM}	Taille conn.	Section mini-	K_{EM}	Taille conn.	Section mini-	K_{EM}	Taille conn.	Section mini-
	V/1000 tr/min	enfich.	male mm²	V/1000 tr/min	enfich.	male mm²	V/1000 tr/min	enfich.	male mm²
EZ401B	96	con.23	1,0 / 1,5	_	_	_	47	con.23	1,0 / 1,5
EZ402B	94	con.23	1,0 / 1,5	_	_	_	60	con.23	1,0 / 1,5
EZ404B	116	con.23	1,0 / 1,5	_	_	_	78	con.23	1,0 / 1,5
EZ501B	97	con.23	1,0 / 1,5	_	_	_	68	con.23	1,0 / 1,5
EZ502B	121	con.23	1,0 / 1,5	_	_	_	72	con.23	1,5
EZ503B	119	con.23	1,0 / 1,5	_	_	_	84	con.23	2,5
EZ505B	141	con.23	1,5	103	con.23	1,5	_	_	_
EZ701B	95	con.23	1,0 / 1,5	_	_	_	76	con.23	1,0 / 1,5
EZ702B	133	con.23	1,0 / 1,5	_	_	_	_	_	_
EZ703B	122	con.23	2,5	_	_	_	_	_	_

Tab. 23: Taille du connecteur enfichable et section minimale, moteurs brushless synchrones EZ avec ventilation forcée

Indication de la section minimale : la section inférieure est disponible à partir de Q2/22 et s'applique aux longueurs de câble jusqu'à 12,5 m maximum.

6.5.2 Description du raccordement

Les câbles hybrides sont disponibles dans la taille de connecteur con.23 avec une fermeture rapide speedtec.

- 1 Connecteurs enfichables
- 2 Câble hybride STOBER
- 3 Raccordement borne X20, moteur
- 4 Raccordement borne X2, frein
- 5 D-Sub X4

Câbles hybrides - Connecteurs enfichables con.23

	Câble (2)	Servo-variateur (3) – (5)					
Schéma des	Broche	Désignation	Couleur de	N° fil/	Broche	Broche	Broche
connexions			fil	Couleur fil	X20	X2	Х4
	А	1U1	BK	1/L1	1	_	_
BO OC	В	1V1	BU	2/L2	2	_	_
AO GO	С	1W1	RD	3/L3	3	_	_
	Е	P_D-	YE	BU	_	_	2
F _O O E	F	Blindage	_	_	_	_	Carter
		P_D					
	G	1BD1	RD	5	_	5	_
	Н	P_D+	VT	WH	_	_	4
	L	1BD2	BK	6	_	6	_
		PE	GNYE	GNYE	4	_	
	Carter	Blindage	_	_	Raccorde- ment de blindage	_	_

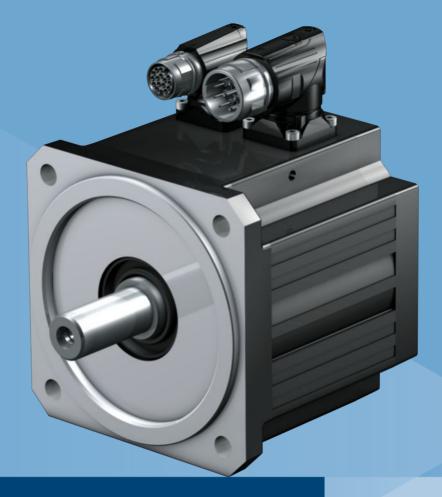
Tab. 24: Brochage câbles hybrides con.23

Longueur x [mm]	Diamètre y [mm]
78	26

Tab. 25: Dimensions connecteur mâle, con.23

6.6 Autres documentations

Vous trouverez d'autres documentations relatives au produit à l'adresse http://www.stoeber.de/fr/download


Saisissez le n^{ϱ} ID de la documentation dans le champ <u>Critère de recherche</u>.

Documentation	ID
Manuel technique de raccordement	443103

7 Moteurs brushless synchrones EZ

Sommaire

7.1	Aperçu		188
7.2	Tablea	ux de sélection	189
	7.2.1	Moteurs EZ avec refroidissement par convection	190
	7.2.2	Moteurs EZ avec ventilation forcée	191
7.3	Courbe	s caractéristiques couple-vitesse de rotation	192
7.4	Croquis	s cotés	202
	7.4.1	Moteurs EZ2 – EZ3 (One Cable Solution)	202
	7.4.2	Moteurs EZ2 – EZ3	203
	7.4.3	Moteurs EZ4 – EZ7 avec refroidissement par convection (One Cable Solution)	204
	7.4.4	Moteurs EZ4 – EZ8 avec refroidissement par convection	205
	7.4.5	Moteurs EZ4 – EZ7 avec ventilation forcée (One Cable Solution)	206
	7.4.6	Moteurs EZ4 – EZ8 avec ventilation forcée	207
7.5	Désign	ation de type	208
	7.5.1	Plaque signalétique	208
7.6	Descrip	otion du produit	209
	7.6.1	Caractéristiques générales	209
	7.6.2	Caractéristiques électriques	210
	7.6.3	Conditions ambiantes	210
	7.6.4	Encodeurs	211
	7.6.5	Sonde de température	213
	7.6.6	Refroidissement	215
	7.6.7	Frein d'arrêt	216
	7.6.8	Technique de raccordement	218
7.7	Planific	ationation	225
	7.7.1	Sélection de l'entraînement	225
	7.7.2	Charges admissibles exercées sur l'arbre	226
	7.7.3	Réduction de charge	228
7.8	Autres	informations	229
	7.8.1	Directives et normes	229
	7.8.2	Marquages	229
	7.8.3	Autres documentations	229

Moteurs brushless synchrones

EZ

7.1 Aperçu

Moteurs brushless synchrones à enroulement à denture unique

Caractéristiques

Dynamique élevée	√
Longueur hors tout courte	✓
Ultra compacte grâce à la technique d'enroule-	✓
ment à denture avec facteur de remplissage de	
cuivre maximal	
Frein sans jeu (option)	√
Plaque signalétique électronique pour mise en	✓
service rapide et fiable	
Refroidissement par convection ou ventilation	√
forcée (option)	
Encodeurs absolus EnDat optiques, inductifs ou	✓
résolveur	
Suppression des courses de référençage inutiles	√
avec encodeurs de valeur absolue Multiturn (op-	
tion)	
One Cable Solution (OCS) avec encodeur EnDat 3	✓
(option)	
Connecteurs enfichables rotatifs avec fermeture	√
ranida	

Couples

M_N	0,4 – 77,2 Nm
M_0	0,44 – 94 Nm

7.2 Tableaux de sélection

Les caractéristiques techniques indiquées dans les tableaux de sélection sont applicables pour :

- Hauteurs d'installation jusqu'à 1000 m max. au-dessus du niveau de la mer
- Températures ambiantes de 15° C à + +40° C
- Exploitation sur un STOBER servo-variateur
- Tension du circuit intermédiaire U_{7K} = CC 540 V
- Laque: RAL 9005 noir foncé, mat

Par ailleurs, les caractéristiques techniques pour un montage non isolé dans les conditions de montage thermiques suivantes s'appliquent :

Туре	Dimensions bride de montage en acier (épaisseur x largeur x hauteur)	Surface de convection bride de montage en acier
EZ2 – EZ5	23 x 210 x 275 mm	0,16 m ²
EZ7 – EZ8	28 x 300 x 400 mm	0,3 m ²

Si les conditions ambiantes sont différentes, observez le chapitre Réduction de charge

Symbole de formule

Vous trouverez une explication des symboles au chapitre Symboles.

Notez les informations supplémentaires relatives aux symboles de formules suivants :

- I₀ = valeur effective du courant de phase en cas de génération du couple à l'arrêt M₀ (tolérance ± 5 %).
- I_{max} = valeur effective du courant de phase maximal de courte durée en cas de génération du couple maximal M_{max} (tolérance ± 5 %). Chaque dépassement de I_{max} peut provoquer un endommagement irrémédiable (démagnétisation) du rotor.
- I_N = valeur effective du courant de phase en cas de génération du couple nominal M_N au point nominal (tolérance \pm 5 %).
- M₀ = couple que le moteur peut générer durablement à une vitesse de rotation de 10 tr/min (tolérance ± 5 %). À une vitesse de rotation de 0 tr/min, il faut tenir compte d'un couple permanent plus faible.
 Dans ces cas, n'hésitez pas à contacter votre conseiller STOBER.

7.2.1 Moteurs EZ avec refroidissement par convection

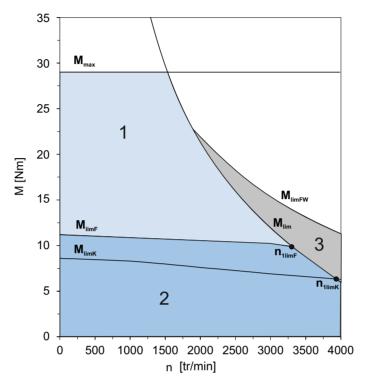
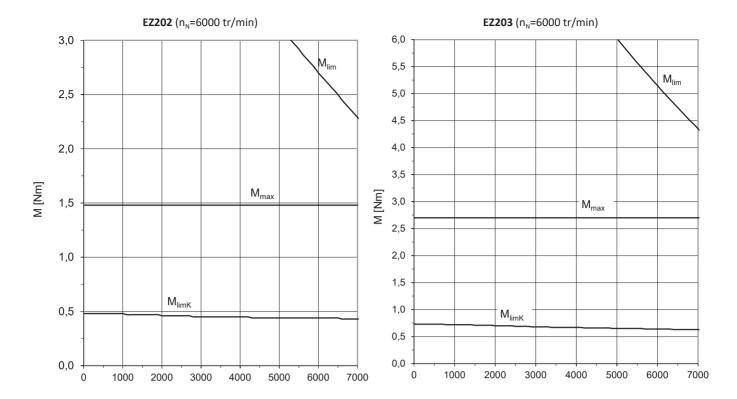
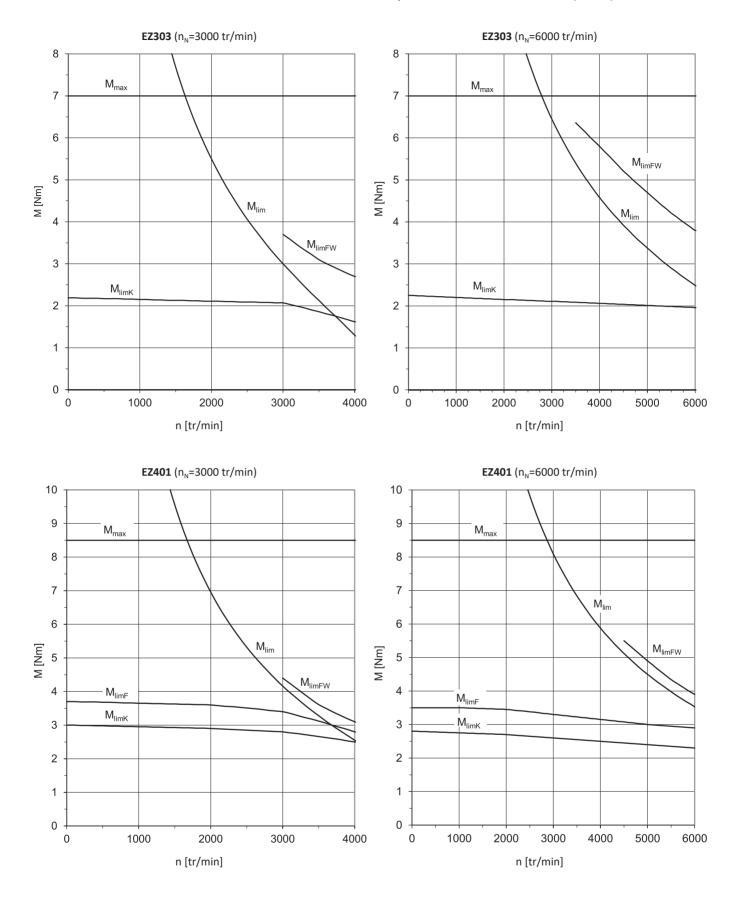
Туре	K _{EM}	n _N	M _N	I _N	K _{M,N}	P _N	M _o	I ₀	K _{M0}	M _R	M _{max}	I _{max}	R _{U-V}	L _{U-V}	T _{el}	\mathbf{J}_{dyn}	m _{dyn}
	[V/1000	[tr/min]	[Nm]	[A]	[Nm/A]	[kW]	[Nm]	[A]	[Nm/A]	[Nm]	[Nm]	[A]	[Ω]	[mH]	[ms]	[kgcm²]	[kg]
E700011	tr/min]	0000	0.40	0.00	0.44	0.05	0.44	4.00	0.45	0.00	4.40	0.40	00.00	45.00	0.04	0.40	4.40
EZ202U	40	6000	0,40	0,99	0,41	0,25	0,44	1,03	0,45	0,03	1,48	3,48	26,00	15,80	0,61	0,13	1,43
EZ203U	40	6000	0,61	1,54	0,40	0,38	0,69	1,64	0,44	0,03	2,70	5,80	13,20	10,30	0,76	0,17	1,67
EZ301U	40	6000	0,89	1,93	0,46	0,56	0,95	2,02	0,49	0,04	2,80	12,7	11,70	39,80	3,40	0,19	1,50
EZ301U	40	3000	0,93	1,99	0,47	0,29	0,95	2,02	0,49	0,04	2,80	12,7	11,70	39,80	3,40	0,19	1,50
EZ302U	42	6000	1,50	3,18	0,47	0,94	1,68	3,48	0,49	0,04	5,00	17,8	4,50	18,70	4,16	0,29	2,10
EZ302U	86	3000	1,59	1,60	0,99	0,50	1,68	1,67	1,03	0,04	5,00	8,55	17,80	75,00	4,21	0,29	2,10
EZ303U	55	6000	1,96	3,17	0,62	1,2	2,25	3,55	0,65	0,04	7,00	16,9	4,90	21,10	4,31	0,40	2,60
EZ303U	109	3000	2,07	1,63	1,27	0,65	2,19	1,71	1,30	0,04	7,00	8,25	20,30	68,70	5,24	0,40	2,60
EZ401U	47	6000	2,30	4,56	0,50	1,4	2,80	5,36	0,53	0,04	8,50	33,0	1,94	11,52	5,94	0,93	4,00
EZ401U	96	3000	2,80	2,74	1,02	0,88	3,00	2,88	1,06	0,04	8,50	16,5	6,70	37,70	5,63	0,93	4,00
EZ402U	60	6000	3,50	5,65	0,62	2,2	4,90	7,43	0,66	0,04	16,0	43,5	1,20	8,88	7,40	1,63	5,10
EZ402U	94	3000	4,70	4,40	1,07	1,5	5,20	4,80	1,09	0,04	16,0	26,5	3,00	21,80	7,26	1,63	5,10
EZ404U	78	6000	5,80	7,18	0,81	3,6	8,40	9,78	0,86	0,04	29,0	51,0	0,89	7,07	7,94	2,98	7,20
EZ404U	116	3000	6,90	5,80	1,19	2,2	8,60	6,60	1,31	0,04	29,0	35,0	1,85	15,00	8,11	2,98	7,20
EZ501U	68	6000	3,40	4,77	0,71	2,1	4,40	5,80	0,77	0,06	16,0	31,0	2,10	12,10	5,76	2,90	5,00
EZ501U	97	3000	4,30	3,74	1,15	1,4	4,70	4,00	1,19	0,06	16,0	22,0	3,80	23,50	6,18	2,90	5,00
EZ502U	72	6000	5,20	7,35	0,71	3,3	7,80	9,80	0,80	0,06	31,0	59,0	0,76	5,60	7,37	5,20	6,50
EZ502U	121	3000	7,40	5,46	1,36	2,3	8,00	5,76	1,40	0,06	31,0	33,0	2,32	16,80	7,24	5,20	6,50
EZ503U	84	6000	6,20	7,64	0,81	3,9	10,6	11,6	0,92	0,06	43,0	63,5	0,62	5,00	8,06	7,58	8,00
EZ503U	119	3000	9,70	6,90	1,41	3,1	11,1	7,67	1,46	0.06	43,0	41,0	1,25	10,00	8.00	7,58	8,00
EZ505U	103	4500	9,50	8,94	1,06	4,5	15,3	13,4	1,15	0.06	67,0	73,0	0.50	4,47	8,94	12,2	10,9
EZ505U	141	3000	13,5	8,80	1,53	4,2	16,0	10,0	1,61	0,06	67,0	52,0	0,93	8,33	8,96	12,2	10,9
EZ701U	76	6000	5,20	6,68	0.78	3,3	7,90	9,38	0,87	0,24	20,0	31,0	0.87	8,13	9,34	8,50	8,30
EZ701U	95	3000	7,40	7,20	1,03	2,3	8,30	8,00	1,07	0,24	20,0	25,0	1,30	12,83	9,87	8,50	8,30
EZ702U	82	6000	7,20	8,96	0.80	4,5	14.3	16,5	0,88	0,24	41,0	60,5	0,34	3,90	11,47	13,7	10,8
EZ702U	133	3000	12,0	8,20	1,46	3,8	14,4	9,60	1,53	0,24	41,0	36,0	1,00	11,73	11,73	13,7	10,8
EZ703U	99	4500	12,1	11,5	1,05	5,7	20.0	17,8	1,14	0,24	65,0	78,0	0,36	4,42	12,28	21,6	12,8
EZ703U	122	3000	16,5	11,4	1,45	5,2	20,8	14,0	1,50	0,24	65,0	62,0	0,52	6,80	13,08	21,6	12,8
EZ705U	106	4500	16,4	14,8	1,11	7,7	30.0	25,2	1,20	0,24	104	114	0,22	2,76	12,55	34,0	18,3
EZ705U	140	3000	21,3	14,0	1,50	6,7	30,0	19,5	1,56	0,24	104	87,0	0,33	4,80	14,55	34,0	18,3
EZ802U	90	4500	10,5	11,2	0,94	5.0	34,5	33,3	1,05	0,24	100	135	0,33	1,90	14,60	58,0	26,6
EZ802U	136	3000	22,3	13,9	1,60		37,1	22,3	1,68	0,30	100	84,0	0,13	5,00	16,66	58,0	26,6
						7,0	,		,						,		
EZ803U	131	3000	26,6	17,7	1,50	8,4	48,2	31,1	1,56	0,30	145	124	0,18	2,79	15,50	83,5	32,7
EZ805U	142	2000	43,7	25,9	1,69	9,2	66,1	37,9	1,75	0,30	205	155	0,13	2,22	17,08	133	45,8

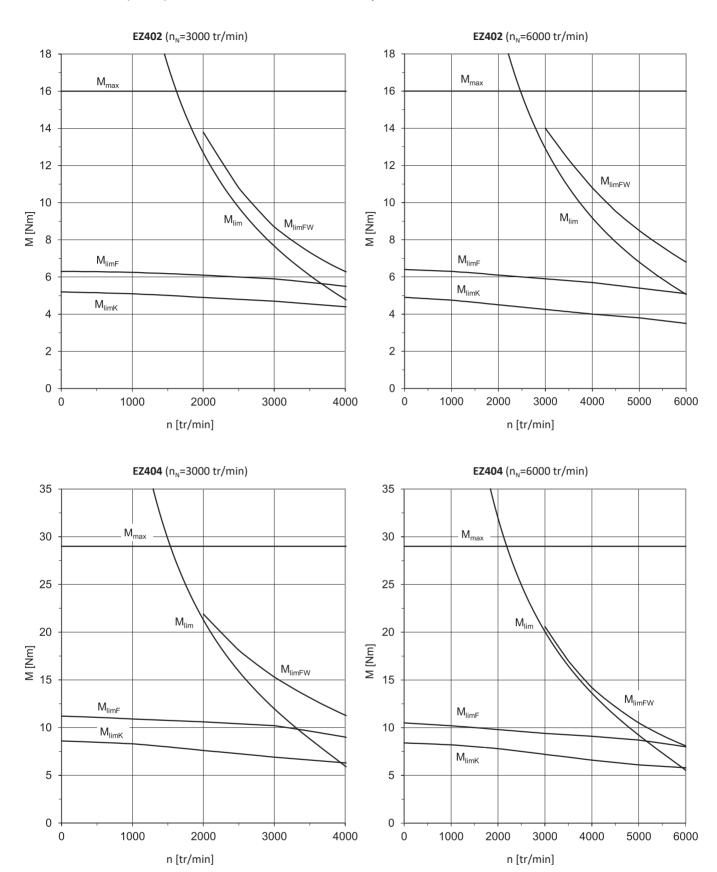
7.2.2 Moteurs EZ avec ventilation forcée

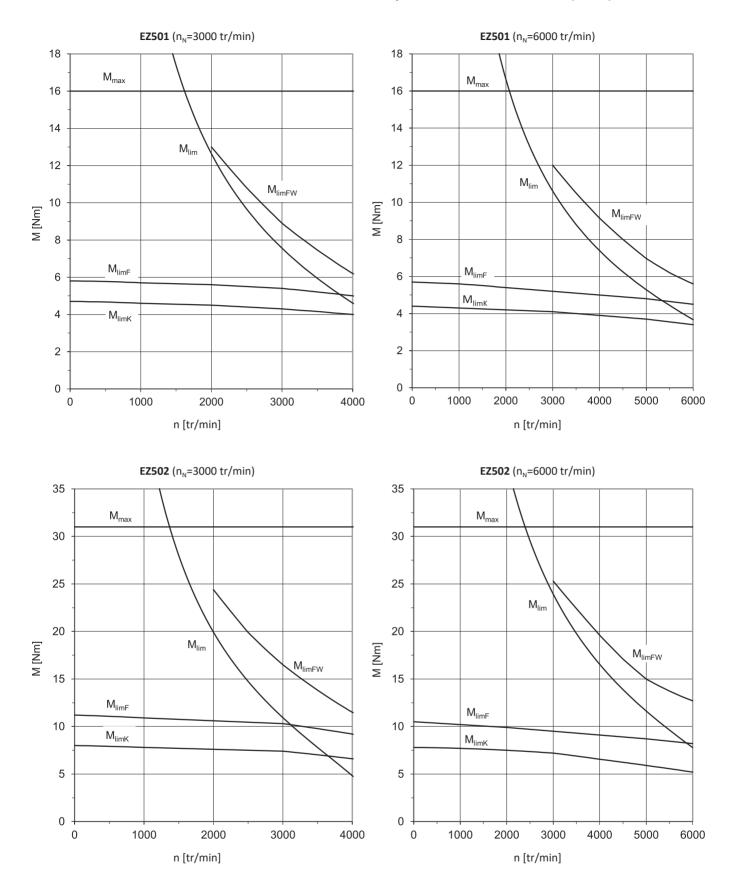
Туре	K _{EM}	n _N	M _N	I _N	K _{M,N}	P _N	M _o	I ₀	K _{M0}	M_R	M _{max}	I _{max}	R _{U-V}	L _{U-V}	T _{el}	$J_{ m dyn}$	m _{dyn}
	[V/1000	[tr/min]	[Nm]	[A]	[Nm/A]	[kW]	[Nm]	[A]	[Nm/A]	[Nm]	[Nm]	[A]	[Ω]	[mH]	[ms]	[kgcm²]	[kg]
	tr/min]																
EZ401B	47	6000	2,90	5,62	0,52	1,8	3,50	6,83	0,52	0,04	8,50	33,0	1,94	11,52	5,94	0,93	5,40
EZ401B	96	3000	3,40	3,40	1,00	1,1	3,70	3,60	1,04	0,04	8,50	16,5	6,70	37,70	5,63	0,93	5,40
EZ402B	60	6000	5,10	7,88	0,65	3,2	6,40	9,34	0,69	0,04	16,0	43,5	1,20	8,88	7,40	1,63	6,50
EZ402B	94	3000	5,90	5,50	1,07	1,9	6,30	5,80	1,09	0,04	16,0	26,5	3,00	21,80	7,26	1,63	6,50
EZ404B	78	6000	8,00	9,98	0,80	5,0	10,5	12,0	0,88	0,04	29,0	51,0	0,89	7,07	7,94	2,98	8,60
EZ404B	116	3000	10,2	8,20	1,24	3,2	11,2	8,70	1,29	0,04	29,0	35,0	1,85	15,00	8,11	2,98	8,60
EZ501B	68	6000	4,50	6,70	0,67	2,8	5,70	7,50	0,77	0,06	16,0	31,0	2,10	12,10	5,76	2,90	7,00
EZ501B	97	3000	5,40	4,70	1,15	1,7	5,80	5,00	1,17	0,06	16,0	22,0	3,80	23,50	6,18	2,90	7,00
EZ502B	72	6000	8,20	11,4	0,72	5,2	10,5	13,4	0,79	0,06	31,0	59,0	0,76	5,60	7,37	5,20	8,50
EZ502B	121	3000	10,3	7,80	1,32	3,2	11,2	8,16	1,38	0,06	31,0	33,0	2,32	16,80	7,24	5,20	8,50
EZ503B	84	6000	10,4	13,5	0,77	6,5	14,8	15,9	1,07	0,06	43,0	63,5	0,62	5,00	8,06	7,58	10,0
EZ503B	119	3000	14,4	10,9	1,32	4,5	15,9	11,8	1,35	0,06	43,0	41,0	1,25	10,00	8,00	7,58	10,0
EZ505B	103	4500	16,4	16,4	1,00	7,7	22,0	19,4	1,14	0,06	67,0	73,0	0,50	4,47	8,94	12,2	12,9
EZ505B	141	3000	20,2	13,7	1,47	6,4	23,4	14,7	1,60	0,06	67,0	52,0	0,93	8,33	8,96	12,2	12,9
EZ701B	76	6000	7,50	10,6	0,71	4,7	10,2	12,4	0,84	0,24	20,0	31,0	0,87	8,13	9,34	8,50	11,2
EZ701B	95	3000	9,70	9,50	1,02	3,1	10,5	10,0	1,07	0,24	20,0	25,0	1,30	12,83	9,87	8,50	11,2
EZ702B	82	6000	12,5	16,7	0,75	7,9	19,3	22,1	0,89	0,24	41,0	60,5	0,34	3,90	11,47	13,7	13,7
EZ702B	133	3000	16,6	11,8	1,41	5,2	19,3	12,9	1,51	0,24	41,0	36,0	1,00	11,73	11,73	13,7	13,7
EZ703B	99	4500	19,8	20,3	0,98	9,3	27,2	24,2	1,13	0,24	65,0	78,0	0,36	4,42	12,28	21,6	15,7
EZ703B	122	3000	24,0	18,2	1,32	7,5	28,0	20,0	1,41	0,24	65,0	62,0	0,52	6,80	13,08	21,6	15,7
EZ705B	106	4500	27,7	25,4	1,09	13	39,4	32,8	1,21	0,24	104	114	0,22	2,76	12,55	34,0	21,2
EZ705B	140	3000	33,8	22,9	1,48	11	41,8	26,5	1,59	0,24	104	87,0	0,33	4,80	14,55	34,0	21,2
EZ802B	90	4500	30,6	30,5	1,00	14	47,4	45,1	1,06	0,30	100	135	0,13	1,90	14,60	58,0	31,6
EZ802B	136	3000	34,3	26,5	1,29	11	47,9	28,9	1,67	0,30	100	84,0	0,30	5,00	16,66	58,0	31,6
EZ803B	131	3000	49,0	35,9	1,37	15	66,7	42,3	1,58	0,30	145	124	0,18	2,79	15,50	83,5	37,7
EZ805B	142	2000	77,2	45,2	1,71	16	94,0	53,9	1,75	0,30	205	155	0,13	2,22	17,08	133	51,8

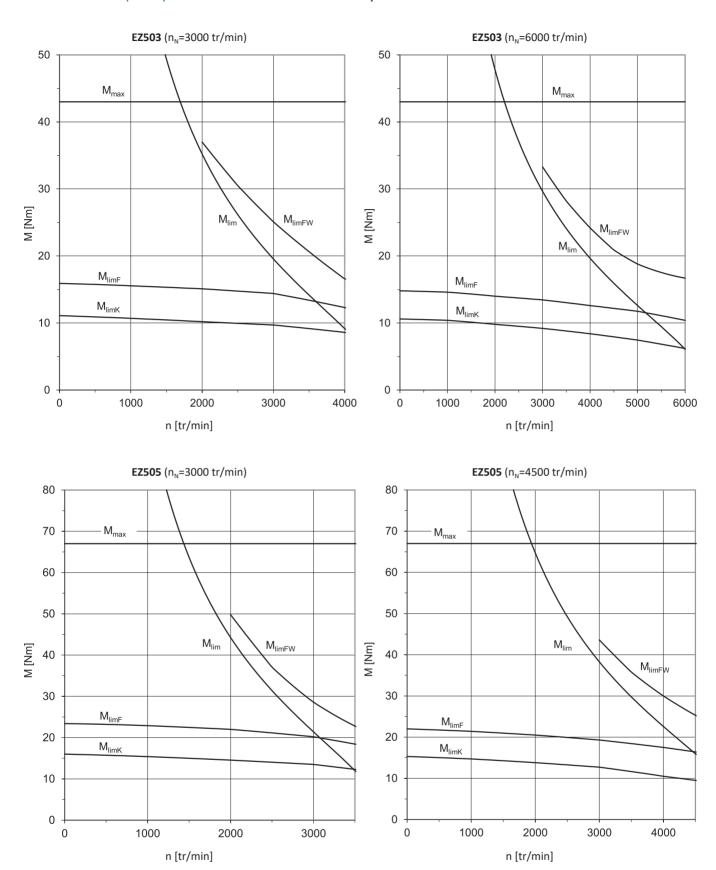
7.3 Courbes caractéristiques couple-vitesse de rotation

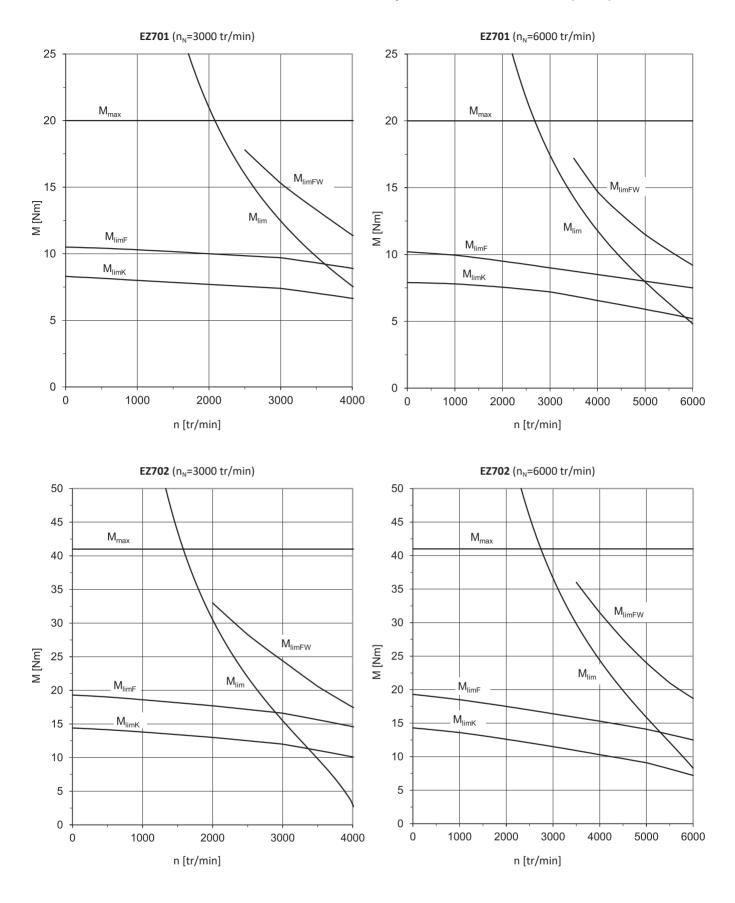
Les courbes caractéristiques couple-vitesse de rotation dépendent de la vitesse de rotation nominale ou du modèle d'enroulement du moteur et de la tension du circuit intermédiaire du servo-variateur utilisé. Les courbes caractéristiques couple-vitesse de rotation suivantes s'appliquent à la tension de circuit intermédiaire de 540 V DC.

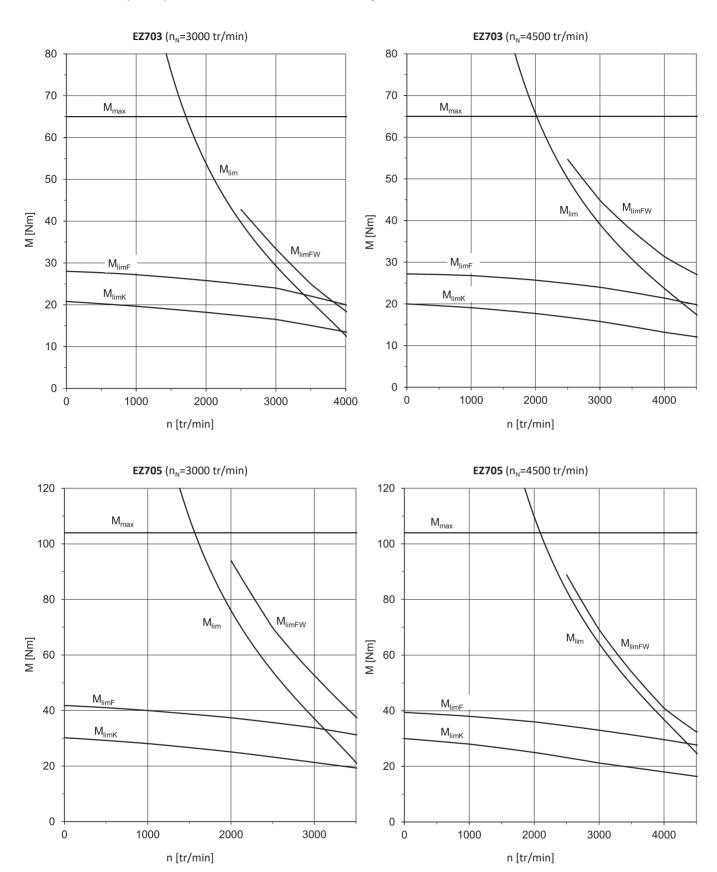




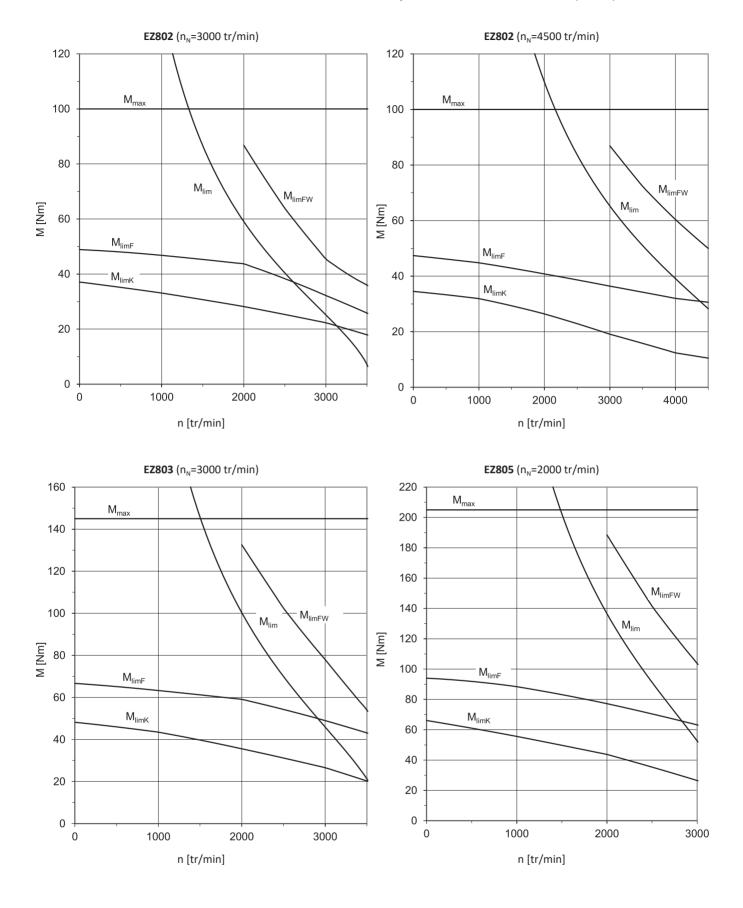

Fig. 1: Explication d'une courbe caractéristique couple-vitesse de rotation


- 1 Plage de couple pour fonctionnement inter- 2 mittent (ED $_{10}$ < 100 %) à $\Delta \vartheta$ = 100 K
- 3 Plage de shuntage (utilisable seulement en cas d'exploitation sur des servo-variateurs STOBER)
- Plage de couple pour fonctionnement continu avec charge constante (mode S1, ED₁₀ = 100 %) à $\Delta \vartheta$ = 100 K









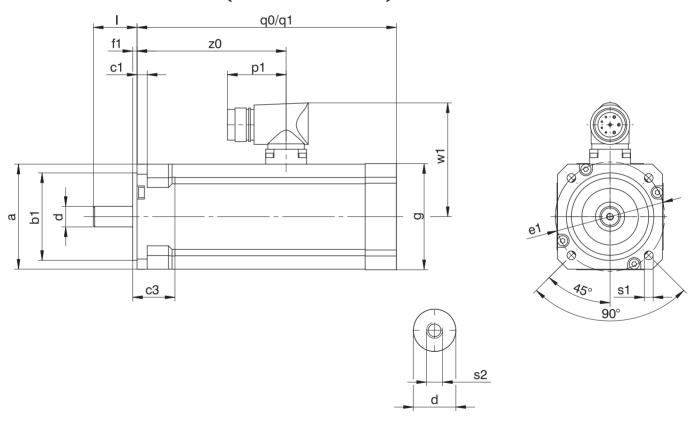
7.4 Croquis cotés

Ce chapitre vous donne des informations sur les dimensions des moteurs.

Les dimensions indiquées peuvent dépasser les spécifications de la norme ISO 2768-mK en raison des tolérances de moulage ou de la somme des tolérances individuelles.

Sous réserve de modifications des dimensions en raison du perfectionnement technique.

Vous pouvez télécharger les modèles 3D de nos entraînements standard à l'adresse https://configurator.stoeber.de/fr-FR/.

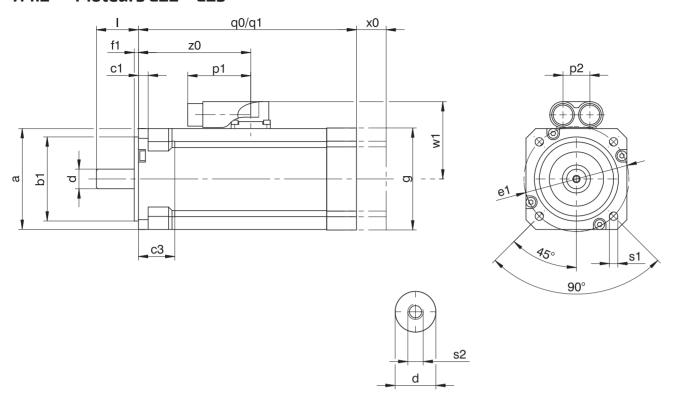

Tolérances

Arbre plein	Tolérance
Ø d'ajustement arbre ≤ 50 mm	DIN 748-1, ISO k6
Ø d'ajustement arbre > 50 mm	DIN 748-1, ISO m6

Trous de centrage dans les arbres pleins conformément à la norme DIN 332-2, forme DR

Taille de filetage	M4	M5	M6	M8	M10	M12	M16	M20	M24
Profondeur de fi-	10	12,5	16	19	22	28	36	42	50
letage [mm]									

7.4.1 Moteurs EZ2 – EZ3 (One Cable Solution)

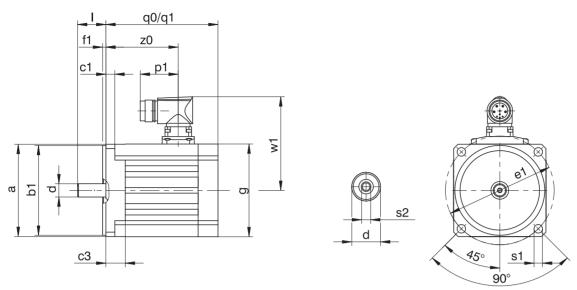


q0 S'applique aux moteurs sans fre	lique aux moteurs sans fr	rein
------------------------------------	---------------------------	------

q1 S'applique aux moteurs avec frein

Туре	□a	Øb1	c1	с3	Ød	Øe1	f1	□g	- 1	p1	q0	q1	Øs1	s2	w1	z0
EZ202U	55	40 _{j6}	7	7	9 _{k6}	63	3,5	55	20	40	148	157	5,8	M4	69,5	93,0
EZ203U	55	40 _{j6}	7	7	9 _{k6}	63	3,5	55	20	40	166	175	5,8	M4	69,5	111,0
EZ301U	72	60 _{j6}	7	26	14 _{k6}	75	3,0	72	30	40	116	156	6,0	M5	78,0	80,5
EZ302U	72	60 _{j6}	7	26	14 _{k6}	75	3,0	72	30	40	138	178	6,0	M5	78,0	102,5
EZ303U	72	60 _{j6}	7	26	14 _{k6}	75	3,0	72	30	40	160	200	6,0	M5	78,0	124,5

7.4.2 Moteurs EZ2 – EZ3

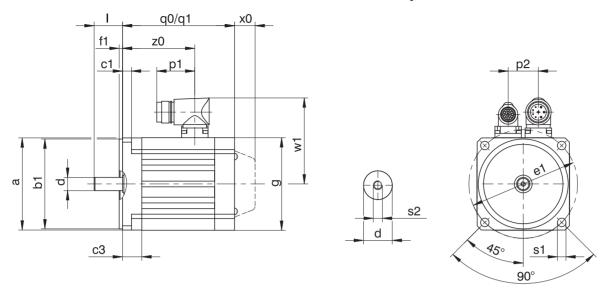

- q0 S'applique aux moteurs sans frein d'arrêt
- x0 EZ2 : ne s'applique qu'aux moteurs avec frein d'arrêt et encodeurs fonctionnant selon le principe de mesure optique ou inductif
 - EZ3 EZ8 : s'applique aux encodeurs fonctionnant selon le principe de mesure optique

Туре	□a	Øb1	c1	c3	Ød	Øe1	f1	□g	I	p1	p2	q0	q1	Øs1	s2	w1	x0	z0
EZ202U	55	40 _{j6}	7	7	9 _{k6}	63	3,5	55	20	45	19	148	157	5,8	M4	47,0	25	93,0
EZ203U	55	40 _{j6}	7	7	9 _{k6}	63	3,5	55	20	45	19	166	175	5,8	M4	47,0	25	111,0
EZ301U	72	60 _{j6}	7	26	14 _{k6}	75	3,0	72	30	45	19	116	156	6,0	M5	55,5	21	80,5
EZ302U	72	60 _{j6}	7	26	14 _{k6}	75	3,0	72	30	45	19	138	178	6,0	M5	55,5	21	102,5
EZ303U	72	60 _{j6}	7	26	14 _{k6}	75	3,0	72	30	45	19	160	200	6,0	M5	55,5	21	124,5

q1

S'applique aux moteurs avec frein d'arrêt

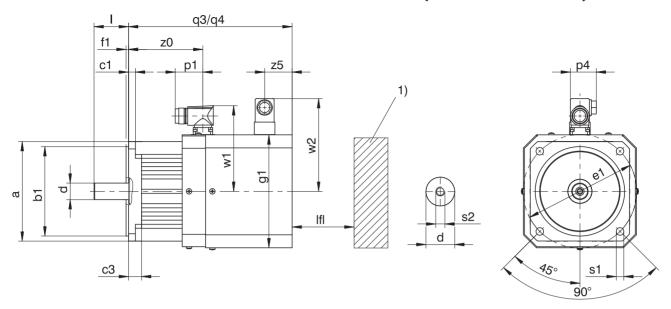
7.4.3 Moteurs EZ4 – EZ7 avec refroidissement par convection (One Cable Solution)



q0 S'applique aux moteurs sans frein

q1 S'applique aux moteurs avec frein

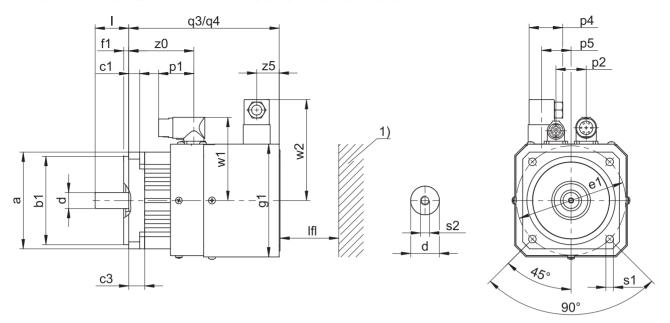
Туре	□a	Øb1	c1	c3	Ød	Øe1	f1	□g	- 1	p1	q0	q1	Øs1	s2	w1	z0
EZ401U	98	95 _{j6}	9,5	20,5	14 _{k6}	115	3,5	98	30	40	118,5	167,0	9	M5	99	76,5
EZ402U	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	98	40	40	143,5	192,0	9	M6	99	101,5
EZ404U	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	98	40	40	193,5	242,0	9	M6	99	151,5
EZ501U	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	115	40	40	109,0	163,5	9	M6	110	74,5
EZ502U	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	115	40	40	134,0	188,5	9	M6	110	99,5
EZ503U	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	115	50	40	159,0	213,5	9	M8	110	124,5
EZ505U	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	115	50	40	209,0	263,5	9	M8	110	174,5
EZ701U	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	145	50	40	121,0	180,0	11	M8	125	83,0
EZ702U	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	145	50	40	146,0	205,0	11	M8	125	108,0
EZ703U	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	145	50	40	171,0	230,0	11	M8	125	133,0
EZ705U	145	130 _{is}	10.0	19.0	32,6	165	3.5	145	58	40	226.0	285.0	11	M12	125	184.0


7.4.4 Moteurs EZ4 – EZ8 avec refroidissement par convection

- q0 S'applique aux moteurs sans frein d'arrêt
- q1 S'applique aux moteurs avec frein d'arrêt
- x0 S'applique aux encodeurs fonctionnant selon le principe de mesure optique

Туре	□a	Øb1	c1	с3	Ød	Øe1	f1	□g	ı	p1	p2	q0	q1	Øs1	s2	w1	х0	z0
EZ401U	98	95 _{j6}	9,5	20,5	14 _{k6}	115	3,5	98	30	40	32	118,5	167,0	9	M5	91,0	22	76,5
EZ402U	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	98	40	40	32	143,5	192,0	9	M6	91,0	22	101,5
EZ404U	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	98	40	40	32	193,5	242,0	9	M6	91,0	22	151,5
EZ501U	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	115	40	40	36	109,0	163,5	9	M6	100,0	22	74,5
EZ502U	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	115	40	40	36	134,0	188,5	9	M6	100,0	22	99,5
EZ503U	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	115	50	40	36	159,0	213,5	9	M8	100,0	22	124,5
EZ505U	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	115	50	40	36	209,0	263,5	9	M8	100,0	22	174,5
EZ701U	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	145	50	40	42	121,0	180,0	11	M8	115,0	22	83,0
EZ702U	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	145	50	40	42	146,0	205,0	11	M8	115,0	22	108,0
EZ703U	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	145	50	40	42	171,0	230,0	11	M8	115,0	22	133,0
EZ705U	145	130 _{j6}	10,0	19,0	32 _{k6}	165	3,5	145	58	71	42	226,0	285,0	11	M12	134,0	22	184,0
EZ802U	190	180 _{j6}	15,0	25,0	32 _{k6}	215	3,5	190	58	71	60	222,0	299,0	13,5	M12	156,5	22	168,0
EZ803U	190	180 _{j6}	15,0	25,0	38 _{k6}	215	3,5	190	80	71	60	263,0	340,0	13,5	M12	156,5	22	209,0
EZ805U	190	180 _{i6}	15,0	25,0	38 _{k6}	215	3,5	190	80	71	60	345,0	422,0	13,5	M12	156,5	22	277,0

7.4.5 Moteurs EZ4 – EZ7 avec ventilation forcée (One Cable Solution)


q3 S'applique aux moteurs sans frein

q4 S'applique aux moteurs avec frein

1) Paroi de la machine

Туре	□a	Øb1	c1	c3	Ød	Øe1	f1	□g1	1	IfI _{min}	p1	p4	q3	q4	Øs1	s2	w1	w2	z0	z 5
EZ401B	98	95 _{j6}	9,5	20,5	14 _{k6}	115	3,5	118	30	20	40	37,5	175	224	9,0	M5	99	111	76,5	25
EZ402B	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	118	40	20	40	37,5	200	249	9,0	M6	99	111	101,5	25
EZ404B	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	118	40	20	40	37,5	250	299	9,0	M6	99	111	151,5	25
EZ501B	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	135	40	20	40	37,5	179	234	9,0	M6	110	120	74,5	25
EZ502B	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	135	40	20	40	37,5	204	259	9,0	M6	110	120	99,5	25
EZ503B	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	135	50	20	40	37,5	229	284	9,0	M8	110	120	124,5	25
EZ505B	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	135	50	20	40	37,5	279	334	9,0	M8	110	120	174,5	25
EZ701B	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	165	50	30	40	37,5	213	272	11,0	M8	125	134	83,0	40
EZ702B	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	165	50	30	40	37,5	238	297	11,0	M8	125	134	108,0	40
EZ703B	145	130 _{i6}	10.0	19,0	24,6	165	3,5	165	50	30	40	37,5	263	322	11,0	M8	125	134	133,0	40

7.4.6 Moteurs EZ4 – EZ8 avec ventilation forcée

- q3 S'applique aux moteurs sans frein d'arrêt
- q4 S'applique aux moteurs avec frein d'arrêt

1) Paroi de la machine

Туре	□a	Øb1	c1	с3	Ød	Øe1	f1	□g1	I	IfI _{min}	p1	p2	p4	р5	q3	q4	Øs1	s2	w1	w2	z0	z5
EZ401B	98	95 _{j6}	9,5	20,5	14 _{k6}	115	3,5	118	30	20	40	32	37,5	0	175	224	9,0	M5	91,0	111	76,5	25
EZ402B	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	118	40	20	40	32	37,5	0	200	249	9,0	M6	91,0	111	101,5	25
EZ404B	98	95 _{j6}	9,5	20,5	19 _{k6}	115	3,5	118	40	20	40	32	37,5	0	250	299	9,0	M6	91,0	111	151,5	25
EZ501B	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	135	40	20	40	36	37,5	0	179	234	9,0	M6	100,0	120	74,5	25
EZ502B	115	110 _{j6}	10,0	16,0	19 _{k6}	130	3,5	135	40	20	40	36	37,5	0	204	259	9,0	M6	100,0	120	99,5	25
EZ503B	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	135	50	20	40	36	37,5	0	229	284	9,0	M8	100,0	120	124,5	25
EZ505B	115	110 _{j6}	10,0	16,0	24 _{k6}	130	3,5	135	50	20	40	36	37,5	0	279	334	9,0	M8	100,0	120	174,5	25
EZ701B	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	165	50	30	40	42	37,5	0	213	272	11,0	M8	115,0	134	83,0	40
EZ702B	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	165	50	30	40	42	37,5	0	238	297	11,0	M8	115,0	134	108,0	40
EZ703B	145	130 _{j6}	10,0	19,0	24 _{k6}	165	3,5	165	50	30	40	42	37,5	0	263	322	11,0	M8	115,0	134	133,0	40
EZ705B	145	130 _{j6}	10,0	19,0	32_{k6}	165	3,5	165	58	30	71	42	37,5	0	318	377	11,0	M12	134,0	134	184,0	40
EZ802B	190	180 _{j6}	15,0	25,0	32 _{k6}	215	3,5	215	58	30	71	60	37,5	62	322	399	13,5	M12	156,5	160	168,0	40
EZ803B	190	180 _{j6}	15,0	25,0	38 _{k6}	215	3,5	215	80	30	71	60	37,5	62	363	440	13,5	M12	156,5	160	209,0	40
EZ805B	190	180 _{j6}	15,0	25,0	38 _{k6}	215	3,5	215	80	30	71	60	37,5	62	445	522	13,5	M12	156,5	160	277,0	40

7.5 Désignation de type

Exemple de code

EZ	4	0	1	U	D	ВВ	Q7	0	096

Explication

Code	Désignation	Modèle
EZ	Туре	Moteur brushless synchrone
4	Taille	4 (exemple)
0	Génération	0
1	Longueur hors tout	1 (exemple)
U	Refroidissement ¹	Refroidissement par convection
В		Ventilation forcée
D	Modèle	Dynamique
ВВ	Servo-variateur	SI6 (exemple)
Q7	Encodeur	EnDat 3 EQI 1131 (Exemple)
0	Frein	Sans frein
Р		Frein à aimant permanent
096	Constante de tension K _{EM}	96 V/1000 tr/min (exemple)

Remarques

- Le chapitre Encodeurs contient des informations sur les encodeurs disponibles.
- Le chapitre Possibilités de combinaison avec servo-variateurs contient des informations sur le raccordement des moteurs brushless synchrones à d'autres servo-variateurs STOBER.

7.5.1 Plaque signalétique

La plaque signalétique d'un moteur brushless synchrone EZ401 est expliquée en exemple dans la figure suivante.

Ligne	Valeur	Description
1	STÖBER Antriebstechnik GmbH	Logo et adresse du fabricant
	+ Co. KG	
2	Ser. No. 10087606	Numéro de série du moteur
3	EZ401BDADM4P096	Désignation de type
	S1 operation	Mode d'exploitation
	TE	Degré de protection conformément à UL1004
4	KEM=96 V/1000 tr/min	Constante de tension
	KMN=1,02 Nm/A	Constante de couple
	PN=2,9 kW	Puissance nominale
5	Th. Prot. Résistance CTP	Type de sonde de température
	145 ° C	
6	Brake	Frein d'arrêt (option)
	4,0 Nm	Couple de freinage statique à 100 °C
	24,00 V	Tension nominale (CC) du frein d'arrêt
	0,75 A	Courant nominal du frein d'arrêt à 20 °C
7	CE	Marquage CE
	UKCA	Marquage UKCA

Ligne	Valeur	Description
8	cURus E488992	Marquage cURus, enregistré sous le numéro UL E488992 (op-
		tion)
9	3~ synchronous servo motor	Type de moteur : moteur brushless synchrone triphasé
	16/01	Date de fabrication (année/semaine calendaire)
10	M0=3,00 Nm	Couple à l'arrêt
	MN=2,80 Nm	Couple nominal
	I0=2,88 A	Courant à l'arrêt
	IN=2,74 A	Courant nominal
11	nN=3000 tr/min	Vitesse de rotation nominale
	IP56	Degré de protection
	Therm. class 155 (F)	Classe thermique
12	Encodeur EnDat 2.2	Type d'encodeur
	EQI 1131 ST	
13	Code QR	Lien vers les informations produit
14	Fan	Ventilation forcée (option)
	230 V ± 5 % ; 50/60 Hz	Tension nominale de la ventilation forcée
	INF = 0,07 A	Courant nominal de la ventilation forcée

7.6 Description du produit

7.6.1 Caractéristiques générales

Caractéristique	Description
Version	IM B5, IM V1, IM V3 conformément à EN 60034-7
Degré de protection	IP56 / IP66 (option)
Classe thermique	155 (F) conformément à EN 60034-1 (155 °C, réchauffement $Δϑ$ = 100 K)
Surface	Noir mat conformément à RAL 9005
Refroidissement	IC 410 Refroidissement par convection
	(IC 416 Refroidissement par convection avec ventilation forcée, en option)
Roulement	Roulement à billes avec lubrification permanente et joint sans contact
Joint	Joints à lèvre radial en FKM (côté A)
Arbre	Arbre sans clavette, qualité du diamètre k6
Concentricité	Classe de tolérance normale conformément à CEI 60072-1
Coaxialité	Classe de tolérance normale conformément à CEI 60072-1
Planéité	Classe de tolérance normale conformément à CEI 60072-1
Intensité des vibrations	A conformément à EN 60034-14
Niveau sonore	Valeurs limites conformément à EN 60034-9

7.6.2 Caractéristiques électriques

Ce chapitre est consacré aux caractéristiques électriques générales du moteur. Vous trouverez des informations détaillées au chapitre Tableaux de sélection.

Caractéristique	Description
Tension de circuit intermé-	DC 540 V (620 V max.) sur les STOBER servo-variateurs
diaire	
Enroulement	Triphasé en exécution à denture unique
Couplage	Étoile, pivot non sorti
Classe de protection	I (mise à la terre) conformément à EN 61140
Classe d'isolation de la tension	C conformément à DIN EN 60034-18-41 (tension de raccordement du
pulsée (IVIC)	convertisseur 0 – 480 V ± 10 %)
Nombre de paires de pôles	2 (EZ2)
	5 (EZ3)
	7 (EZ4/EZ5/EZ7)
	8 (EZ8)

7.6.3 Conditions ambiantes

Ce chapitre est consacré aux conditions ambiantes standard pour le transport, le stockage et le fonctionnement du moteur. Vous trouverez des informations sur d'autres conditions ambiantes au chapitre Réduction de charge.

Caractéristique	Description
Température ambiante transport/stockage	de -30 à +85 °C
Température ambiante pendant le fonctionnement	de – 15 °C à + 40 °C
Humidité de l'air relative	5 % à 95 %, sans condensation
Hauteur d'installation	≤ 1000 m au-dessus du niveau de la mer
Tenue aux chocs	≤ 50 m/s² (5 g), 6 ms conformément à EN
	60068-2-27

Remarques

- STOBER Les moteurs brushless synchrones ne sont pas conçus pour une exploitation en atmosphère explosible.
- Interceptez les câbles de puissance à proximité du moteur afin de protéger les connecteurs moteur des vibrations générées par le câble.
- Notez que les chocs sont susceptibles de réduire les couples de freinage du frein (option).
- Tenez compte du fait que les disques du frein d'arrêt (en option) peuvent givrer à des températures de fonctionnement inférieures à 0 °C.
- Tenez également compte des chocs auxquels le moteur est soumis sous l'effet des groupes de sortie (par exemple les réducteurs ou les pompes) auxquels le moteur est accouplé.

7.6.4 Encodeurs

Les moteurs brushless synchrones STOBER peuvent être équipés de différents types d'encodeur. Les chapitres suivants vous guident dans le choix d'un encodeur adapté à votre application.

7.6.4.1 Guide de sélection principe de mesure par encodeur

Le tableau suivant vous guide dans la sélection d'un principe de mesure par encodeur parfaitement adapté à votre application.

Caractéristique	Encodeur de v	aleur absolue	Résolveur
Principe de mesure	Optique	Inductif	Électromagné-
			tique
Stabilité thermique	★★☆	***	***
Résistance aux vibrations et aux chocs	★★☆	***	***
Précision système	***	★★☆	***
Modèle avec exclusion de défaut de l'accouplement mé-	✓	✓	_
canique FMA (en option avec interface EnDat)			
Suppression des courses de référençage inutiles dans le	✓	✓	_
cas du modèle Multiturn (option)			
Mise en service facile via la plaque signalétique électro-	✓	✓	_
nique			
Légende : ★☆☆ = satisfaisant, ★★☆ = bien, ★★★ = très b	oien		

7.6.4.2 Guide de sélection interface EnDat

Le tableau suivant vous sert de guide de sélection produits pour trouver l'interface EnDat des encodeurs absolus.

Caractéristique	EnDat 2.1	EnDat 2.2	EnDat 3
Temps de cycles courts	**☆	***	***
Transmission d'informations supplémentaires avec la va-	_	✓	✓
leur de position			
Plage d'alimentation en tension élargie	**☆	***	***
One Cable Solution OCS	_	_	✓
Légende : ★★☆ = bien, ★★★ = très bien			

7.6.4.3 Encodeur EnDat 3

EnDat 3 est un protocole robuste entièrement numérique qui s'en sort avec un minimum de connexions. En-Dat 3 permet l'utilisation de One Cable Solution avec entraînement des connexions entre l'encodeur et le servo-variateur dans le câble de puissance du moteur.

One Cable Solution offre les avantages suivants :

- Nette réduction du volume de câblage, le câble d'encodeur n'étant pas nécessaire
- Pour des longueurs de câble jusqu'à 50 m, pas de self nécessaire entre le servo-variateur et le moteur
- Fonctions de sécurité avancées possibles (jusqu'à SIL2/catégorie 3, PLd)
- Encombrement considérablement réduit, le connecteur d'encodeur n'étant pas nécessaire
- Transmission des valeurs mesurées de la sonde de température via le protocole EnDat 3.

Un moteur équipé de l'encodeur EnDat 3 ne peut fonctionner que sur le servo-variateur SI6 ou SC6 STOBER.

Les caractéristiques de l'encodeur EnDat 3 sont les suivantes :

Type d'encodeur	Code				Valeurs de po- sition par tour	MTTF [an-	PHF [h]	
		sure	sables			nées]		
EnDat 3 EQI 1131	Q7	Inductif	4096	19 bits	524288	> 100	≤ 15 × 10 ⁻⁹	

7.6.4.4 Encodeur EnDat 2

Dans ce chapitre, vous trouverez les caractéristiques techniques détaillées des types d'encodeurs sélectionnables avec interface EnDat.

Encodeurs avec interface EnDat 2.2

Type d'encodeur	Code	Principe de me-	Nombre de tours saisis-	Résolu- tion	Valeurs de po- sition par tour	MTTF [an-	PHF [h]
		sure	sables		onion par cour	nées]	
EnDat 2.2 EQI 1131	Q6	Inductif	4096	19 bits	524288	> 100	≤ 15 × 10 ⁻⁹
EnDat 2.2 EBI 1135	В0	Inductif	65536	18 bits	262144	> 100	≤ 600 × 10 ⁻⁹
EnDat 2.2 ECI 1118-G2	C5	Inductif	_	18 bits	262144	> 76	≤ 1,5 × 10 ⁻⁶
EnDat 2.2 EQN 1135	M3	Optique	4096	23 bits	8388608	> 100	≤ 15 × 10 ⁻⁹
FMA							
EnDat 2.2 EQN 1135	Q5	Optique	4096	23 bits	8388608	> 100	≤ 15 × 10 ⁻⁹
EnDat 2.2 ECN 1123	M1	Optique	_	23 bits	8388608	> 100	≤ 15 × 10 ⁻⁹
FMA							
EnDat 2.2 ECN 1123	C7	Optique	_	23 bits	8388608	> 100	≤ 15 × 10 ⁻⁹

Encodeurs avec interface EnDat 2.1

Type d'encodeur	Code	Prin- cipe de me- sure	Nombre de tours saisis- sables	Résolu- tion	Valeurs de po- sition par tour	•	MTTF [an- nées]	PHF [h]
EnDat 2.1 EQN 1125 FMA	M2	Op- tique	4096	13 bits	8192	Sin/Cos 512	> 57	≤ 2 × 10 ⁻⁶
EnDat 2.1 EQN 1125	Q4	Op- tique	4096	13 bits	8192	Sin/Cos 512	> 57	≤ 2 × 10 ⁻⁶
EnDat 2.1 ECN 1113 FMA	M0	Op- tique	-	13 bits	8192	Sin/Cos 512	> 57	≤ 2 × 10 ⁻⁶
EnDat 2.1 ECN 1113	C6	Op- tique	_	13 bits	8192	Sin/Cos 512	> 57	≤ 2 × 10 ⁻⁶

Remarques

- Le code de l'encodeur fait partie intégrante de la désignation de type du moteur.
- FMA = Modèle avec exclusion de défauts pour l'accouplement mécanique.
- MTTF = temps moyen avant défaillance dangereuse. Les valeurs MTTF supérieures à 100 ans ont été réduites conformément à la norme DIN EN ISO 13849.
- PFH = probabilité de défaillance dangereuse par heure
- L'encodeur EnDat 2.2 EBI 1135 variable requiert une batterie tampon externe afin que l'information de position absolue soit préservée après la coupure de l'alimentation en tension (option AES pour les servo-variateurs STOBER).
- Seuls les encodeurs Multiturn sont en mesure de saisir plusieurs tours de l'arbre du moteur.

7.6.4.5 Résolveur

Ce chapitre fournit des informations détaillées sur les caractéristiques techniques du résolveur pouvant être monté comme encodeur dans un moteur brushless synchrone STOBER.

Caractéristique	Description
Nombre de pôles	2
Tension d'entrée U _{1eff}	7 V ± 5 %
Fréquence d'entrée f ₁	10 kHz
Tension de sortie U _{2,S1-S3}	$K_{tr} \cdot U_{R1-R2} \cdot \cos \theta$
Tension de sortie U _{2,S2-S4}	$K_{tr} \cdot U_{R1-R2} \cdot \sin \theta$
Rapport de transformation K _{tr}	0,5 ± 5 %
Erreur électrique	±10 arcmin
MTTF	> 100 ans
PHF	≤ 10 ⁻⁹

7.6.4.6 Possibilités de combinaison avec servo-variateurs

Le tableau suivant récapitule les possibilités de combinaison des servo-variateurs STOBER avec des types d'encodeur sélectionnables.

Servo-variateur		SDS 5000		SD6		SI6			SC6		
Code servo-variateur		AA	AC	AD	AE	AP	AQ	ВВ	AU	AV	ВА
ID plan de raccordement		442305	442307	442450	442451	442771	442772	443175	443052	443053	443174
Encodeur	Code										
	enco-										
	deur										
EnDat 3 EQI 1131	Q7	-	-	-	-	-	-	✓	-	-	✓
EnDat 2.2 EQI 1131	Q6	✓	_	✓	_	✓	_	_	✓	_	_
EnDat 2.2 EQN 1135 FMA	M3	✓	_	✓	_	_	_	_	_	_	_
EnDat 2.2 EQN 1135	Q5	✓	_	✓	_	✓	_	_	✓	_	_
EnDat 2.2 ECN 1123 FMA	M1	✓	_	✓	_	-	_	_	-	_	-
EnDat 2.2 ECN 1123	C7	✓	_	✓	_	✓	_	_	✓	_	_
EnDat 2.2 ECI 1118-G2	C5	✓	-	✓	_	✓	_	-	✓	_	-
EnDat 2.1 EQN 1125 FMA	M2	✓	✓	✓	✓	_	_	_	_	_	_
EnDat 2.1 EQN 1125	Q4	✓	✓	✓	✓	_	_	_	_	_	_
EnDat 2.1 ECN 1113 FMA	M0	✓	✓	✓	✓	_	_	_	_	_	_
EnDat 2.1 ECN 1113	C6	✓	✓	✓	✓	-	_	_	_	_	-
Résolveur	R0	✓	_	_	✓	_	✓	_	_	✓	_

Remarques

 Le code du servo-variateur et de l'encodeur font partie intégrante de la désignation de type du moteur (voir chapitre Désignation de type).

7.6.5 Sonde de température

Ce chapitre contient des informations sur les caractéristiques techniques des sondes de température pouvant être montées dans les moteurs brushless synchrones STOBER afin de réaliser la protection thermique de l'enroulement. Afin d'éviter un endommagement du moteur, il est impératif que vous surveilliez la sonde de température au moyen d'appareils correspondants qui coupent le moteur en cas de dépassement de la température d'enroulement maximale admissible.

Certains encodeurs sont dotés d'un dispositif de surveillance thermique intégré dont les seuils d'avertissement et de coupure peuvent se chevaucher avec les valeurs correspondantes réglées dans le servo-variateur pour la sonde de température. Le cas échéant, cela peut conduire à ce qu'un encodeur avec dispositif propre de surveillance thermique force une coupure du moteur bien avant qu'il n'ait atteint ses données nominales.

Vous trouverez les informations sur le raccordement électrique de la sonde de température au chapitre Technique de raccordement.

7.6.5.1 Résistance CTP

La résistance CTP est montée en série comme sonde de température dans les moteurs brushless synchrones STOBER.

La résistance CTP est une thermistance triple conformément à DIN 44082 permettant de surveiller la température de chaque phase d'enroulement. Les valeurs de résistance indiquées dans le tableau et la courbe caractéristique suivants sont celles d'une thermistance simple conformément à DIN 44081. Pour une thermistance triple conformément à DIN 44082, multipliez ces valeurs par 3.

Caractéristique	Description
Température nominale de fonctionnement ϑ_{NAT}	145° C ± 5 K
Résistance R de −20° C à ϑ _{NAT} − 20 K	≤ 250 Ω
Résistance R à ϑ _{NAT} − 5 K	≤ 550 Ω
Résistance R à ϑ_{NAT} + 5 K	≥ 1330 Ω
Résistance R à ϑ_{NAT} + 15 K	≥ 4000 Ω
Tension de service	≤ CC 7,5 V
Temps de réponse thermique	< 5 s
Classe thermique	155 (F) conformément à EN 60034-1 (155 °C, ré-
	chauffement Δϑ = 100 K)

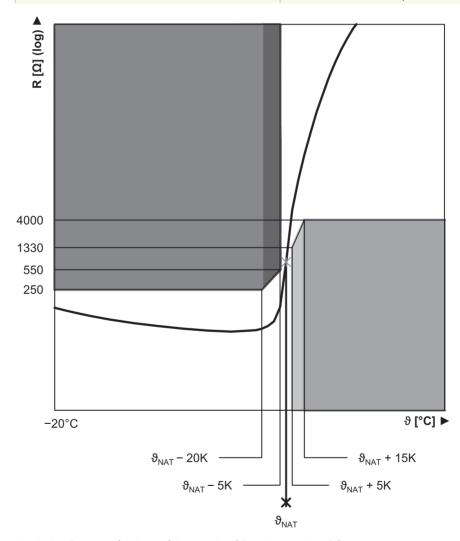


Fig. 2: Courbe caractéristique résistance CTP (thermistance simple)

7.6.5.2 Sonde de température Pt1000

Les moteurs brushless synchrones STOBER peuvent être équipés en option d'une sonde de température Pt1000. La sonde de température Pt1000 est une résistance dépendante de la température avec une courbe caractéristique de résistance suivant la température de manière linéaire. La sonde de température Pt1000 permet ainsi des mesures de la température d'enroulement. Ces mesures sont toutefois limitées à une phase de l'enroulement moteur. Afin de protéger suffisamment le moteur contre le dépassement de la température d'enroulement maximale admissible, réalisez dans le servo-variateur un dispositif de surveillance de la température d'enroulement via un modèle i²t.

Les sondes de température Pt1000 peuvent également être utilisées avec One Cable Solution.

Afin de ne pas fausser les valeurs mesurées en raison de la propre chaleur de la sonde de température, évitez de dépasser le courant de mesure indiqué.

Caractéristique	Description
Courant de mesure (constant)	2 mA
Résistance R à ϑ = 0 °C	1000 Ω
Résistance R à ϑ = 80 °C	1300 Ω
Résistance R à ϑ = 150 °C	1570 Ω

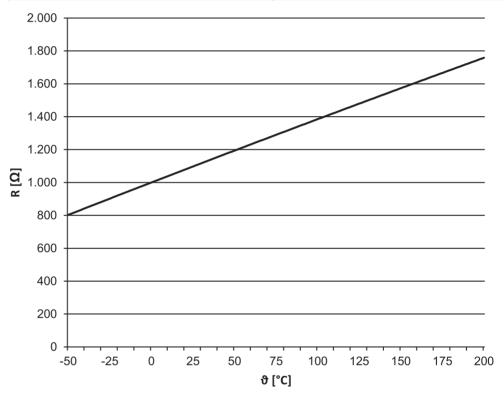


Fig. 3: Courbe caractéristique sonde de température Pt1000

7.6.6 Refroidissement

Le refroidissement d'un moteur brushless synchrone standard est effectué par convection (IC 410 conformément à EN 60034-6). En option, le moteur peut être refroidi par une ventilation forcée.

7.6.6.1 Ventilation forcée

Les moteurs brushless synchrones STOBER peuvent être refroidis en option par ventilation forcée afin d'augmenter les caractéristiques de puissance à taille égale. L'installation a posteriori d'une ventilation forcée est également possible afin d'optimiser l'entraînement. Dans ce cas, vérifiez si la section de conducteur des câbles de puissance du moteur doit être augmentée. Tenez également compte des dimensions de la ventilation forcée.

Les caractéristiques de puissance des moteurs avec ventilation forcée sont indiquées dans le chapitre Tableaux de sélection, et les dimensions dans le chapitre Croquis cotés.

Caractéristiques techniques

Moteur	Ventilation forcée	U _{N,F} [V]	I _{N,F}	P _{N,F} [W]	q _{vF} [m³/h]	L _{pA,F}	m _F [kg]	Degré de protection
EZ4_B	FL4		0,07	10	59	41	1,4	IP44
EZ5_B	FL5	230 V ± 5 %,	0,10	14	160	45	1,9	IP54
EZ7_B	FL7	50/60 Hz	0,10	14	160	45	2,9	IP54
EZ8_B	FL8		0,20	26	420	54	5,0	IP55

Affectation des broches des connecteurs enfichables de ventilation forcée

Schéma des connexions	Broche	Raccordement
	1	L1 (phase)
	2	N (conducteur neutre)
7	3	
		Conducteur de protection

7.6.7 Frein d'arrêt

Les moteurs brushless synchrones STOBER peuvent être équipés en option d'un frein d'arrêt à aimant permanent sans jeu pour retenir l'arbre du moteur lorsque le moteur est à l'arrêt. Le frein d'arrêt se serre automatiquement en cas de chute de tension.

Le frein d'arrêt est conçu pour un nombre élevé de commutations ($B_{10} = 10$ millions de commutation, $B_{10d} = 20$ millions de commutation).

Tension nominale du frein d'arrêt à aimant permanent : DC 24 V ± 5 %, lissée.

Au moment de la planification, observez les points suivants :

- Le frein d'arrêt est conçu pour le freinage de l'arbre du moteur à l'arrêt. Pendant le fonctionnement, effectuez les freinages en utilisant les fonctions électriques correspondantes du servo-variateur. Le frein d'arrêt peut être exceptionnellement utilisé pour les freinages à pleine vitesse de rotation en cas de panne de courant ou lors du réglage de la machine. Dans ce contexte, il faut veiller à ne pas dépasser le travail de frottement maximal admissible W_{B, Rmax/h}.
- Notez que lors de freinages à pleine vitesse de rotation, le couple de freinage M_{Bdyn} peut être de 50 % plus faible qu'au début. En conséquence, le freinage est retardé et les distances de freinage sont plus longues.
- Effectuez régulièrement un test de frein afin de garantir le fonctionnement fiable des freins. Pour trouverez des informations détaillées dans la documentation du moteur et du servo-variateur.
- Raccordez une varistance de type S14 K35 (ou autre semblable) parallèlement à la bobine de frein afin de protéger votre machine des surtensions de commutations. (Pas nécessaire en cas de raccordement du frein d'arrêt au servo-variateur STOBER de 6e et de 5e génération avec module de freinage BRS/ BRM).
- Le frein d'arrêt du moteur n'offre pas de sécurité suffisante aux personnes se trouvant dans la zone dangereuse des axes verticaux soumis à la force de gravité. C'est la raison pour laquelle vous devez prendre des mesures supplémentaires visant à minimiser le risque, comme par ex. prévoir un soubassement mécanique pour les travaux d'entretien.
- Tenez compte des chutes de tension dans les câbles de raccordement entre la source de tension et les raccordements du frein d'arrêt.
- Le couple d'arrêt du frein peut être réduit sous l'effet de la tenue aux chocs. Pour de plus amples informations sur la tenue aux chocs, voir le chapitre Conditions ambiantes.
- À des températures de services comprises entre –15 ° C et 0 ° C, des bruits liés au fonctionnement peuvent se faire entendre lorsque le frein d'arrêt est froid et débloqué. Au fur et à mesure que la température du frein d'arrêt augmente, ces bruits diminuent jusqu'à disparaître complètement lorsque le frein d'arrêt se trouve à sa température de fonctionnement.

Calcul du travail de frottement par freinage

$$W_{\text{B,R/B}} = \frac{J_{\text{tot}} \cdot n^2}{182,4} \cdot \frac{M_{\text{Bdyn}}}{M_{\text{Bdyn}} \pm M_{\text{L}}} \,, \; M_{\text{Bdyn}} > M_{\text{L}} \label{eq:WBdyn}$$

Le signe de M_L est positif lorsque le mouvement est vertical vers le haut ou horizontal, et négatif lorsque le mouvement est vertical vers le bas.

Calcul du temps de freinage

$$t_{\text{dec}} = 2,66 \cdot t_{\text{1B}} + \frac{n \cdot J_{\text{tot}}}{9,55 \cdot M_{\text{Bdyn}}}$$

Comportement de commutation

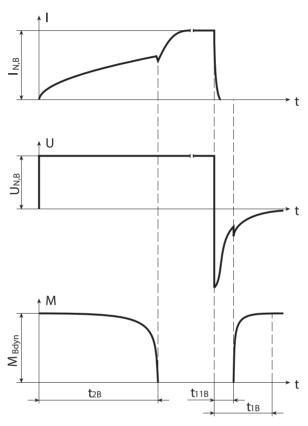


Fig. 4: Frein d'arrêt – Comportement de commutation

Caractéristiques techniques

Caracteris	7.1.qu.00 to												
Туре	M _{Bstat}	M_{Bdyn}	I _{N,B}	W _{B,Rmax/h}	N _{Bstop}	J_{Bstop}	$W_{B,Rlim}$	t _{2B}	t _{11B}	t _{1B}	X _{B,N}	ΔJ_{B}	Δm _B
	[Nm]	[Nm]	[A]	[kJ/h]		[kgcm ²]	[kJ]	[ms]	[ms]	[ms]	[mm]	[kgcm ²]	[kg]
EZ202	1,2	1,0	0,36	3,0	45000	0,310	70	10	2,0	5	0,15	0,03	0,25
EZ203	1,2	1,0	0,38	3,0	36000	0,390	70	10	2,0	5	0,15	0,03	0,25
EZ301	2,5	2,3	0,51	6,0	48000	0,752	180	25	3,0	20	0,20	0,19	0,55
EZ302	4,0	3,8	0,50	8,5	38000	0,952	180	44	4,0	26	0,30	0,19	0,55
EZ303	4,0	3,8	0,50	8,5	30000	1,17	180	44	4,0	26	0,30	0,19	0,55
EZ401	4,0	3,8	0,50	8,5	16000	2,24	180	44	4,0	26	0,30	0,19	0,76
EZ402	8,0	7,0	0,75	8,5	13500	4,39	300	40	2,0	20	0,30	0,57	0,97
EZ404	8,0	7,0	0,75	8,5	8500	7,09	300	40	2,0	20	0,30	0,57	0,97
EZ501	8,0	7,0	0,75	8,5	8700	6,94	300	40	2,0	20	0,30	0,57	1,19
EZ502	8,0	7,0	0,80	8,5	5200	11,5	300	40	2,0	20	0,30	0,57	1,19
EZ503	15	12	1,0	11,0	5900	18,6	550	60	5,0	30	0,30	1,72	1,62
EZ505	15	12	1,0	11,0	4000	27,8	550	60	5,0	30	0,30	1,72	1,62
EZ701	15	12	1,0	11,0	5400	20,5	550	60	5,0	30	0,30	1,74	1,94
EZ702	15	12	1,0	11,0	3600	30,9	550	60	5,0	30	0,30	1,74	1,94
EZ703	32	28	1,1	25,0	5200	54,6	1400	100	5,0	25	0,40	5,68	2,81
EZ705	32	28	1,1	25,0	3500	79,4	1400	100	5,0	25	0,40	5,68	2,81
EZ802	65	35	1,7	45,0	6000	149	2250	200	10	50	0,40	16,5	5,40
EZ803	65	35	1,7	45,0	4500	200	2250	200	10	50	0,40	16,5	5,40
EZ805	115	70	2,1	65,0	7000	376	6500	190	12	65	0,50	55,5	8,40

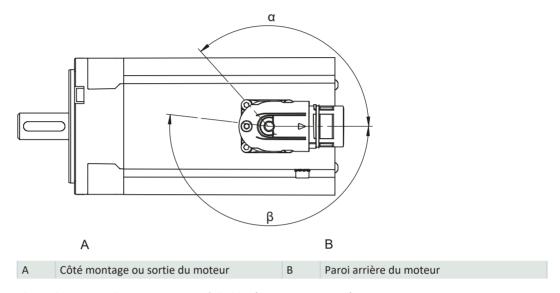
7.6.8 Technique de raccordement

Les chapitres suivants décrivent la technique de raccordement des moteurs brushless synchrones STOBER standard aux servo-variateurs STOBER. Pour de plus amples informations sur le type de servo-variateur indiqué dans votre commande, consultez le schéma de raccordement accompagnant chaque moteur brushless synchrone.

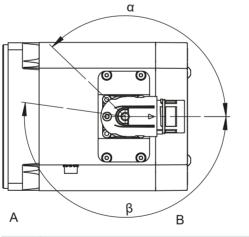
7.6.8.1 Raccordement du carter moteur au dispositif de mise à la terre

Raccordez le carter moteur au dispositif de mise à la terre de la machine afin de protéger les personnes et d'éviter les déclenchements erronés des dispositifs différentiels résiduels.

Toutes les pièces de fixation requises pour le raccordement du conducteur de protection au carter moteur sont livrées avec le moteur. La vis de mise à la terre du moteur est marquée par le symbole conformément à CEI 60417-DB. La section du conducteur de protection doit être au minimum égale à celle des fils du câble de puissance.


7.6.8.2 Connecteurs (One Cable Solution)

Dans le cas du modèle One Cable Solution, le raccordement de puissance et d'encodeur est effectué via un connecteur commun.


Dans le cas de moteurs avec ventilation forcée, évitez des collisions entre le câble de raccordement du moteur et le connecteur enfichable de la ventilation forcée. En cas de collision, tournez les connecteurs enfichables du moteur en conséquence. Voir le chapitre Croquis cotés pour de plus amples détails sur la position du connecteur enfichable de la ventilation forcée.

Les illustrations montrent la position des connecteurs enfichables à la livraison.

Plages de rotation des connecteurs enfichables (moteurs EZ2 - EZ3)

Plages de rotation des connecteurs enfichables (moteurs EZ4 – EZ7)

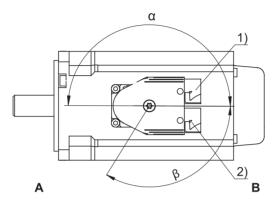
A Côté montage ou sortie du moteur B Paroi arrière du moteur

Caractéristiques des connecteurs enfichables

Type de moteur		Taille	Connexion	Plage de rotation	
				α	β
	EZ2 – EZ5, EZ701 – EZ703, EZ705U	con.23	Fermeture rapide	130°	190°

Remarques

 Le chiffre après « con. » indique le diamètre du filetage extérieur approximatif du connecteur enfichable en mm (con.23 désigne par ex. un connecteur enfichable de diamètre du filetage extérieur d'env. 23 mm).

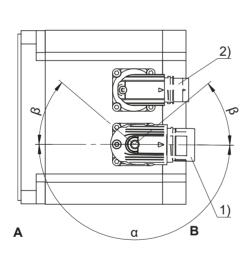

7.6.8.3 Connecteurs

Les moteurs brushless synchrones STOBER standard sont équipés de connecteurs rotatifs avec fermeture rapide. Consultez le présent chapitre pour plus de détails.

Dans le cas de moteurs avec ventilation forcée, évitez des collisions entre le câble de raccordement du moteur et le connecteur enfichable de la ventilation forcée. En cas de collision, tournez les connecteurs enfichables du moteur en conséquence. Voir le chapitre Croquis cotés pour de plus amples détails sur la position du connecteur enfichable de la ventilation forcée.

Les illustrations montrent la position des connecteurs enfichables à la livraison.

Plages de rotation des connecteurs enfichables (moteurs EZ2 - EZ3)



- 1 Connecteur de puissance
- 2 Connecteur d'encodeur

В

- A Côté montage ou sortie du moteur
- Paroi arrière du moteur

Plages de rotation des connecteurs enfichables (moteurs EZ4 - EZ8)

2)

В

- 1 Connecteur de puissance
- 2 Connecteur d'encodeur
- A Côté montage ou sortie du moteur
- B Paroi arrière du moteur

Caractéristiques connecteur de puissance

Type de moteur	Taille	Connexion	Plage de	rotation
			α	β
EZ2, EZ3	con.15	Fermeture rapide	180°	140°
EZ4, EZ5, EZ701, EZ702, EZ703	con.23	Fermeture rapide	180°	40°
EZ705, EZ802, EZ803, EZ805	con.40	Fermeture rapide	180°	40°

Α

Caractéristiques connecteur encodeur

Type de moteur	Taille	Connexion	Plage de	rotation
			α	β
EZ2, EZ3	con.15	Fermeture rapide	180°	140°
EZ4, EZ5, EZ7, EZ802, EZ803, EZ805	con.17	Fermeture rapide	195°	35°

Remarques

- Le chiffre après « con. » indique le diamètre du filetage extérieur approximatif du connecteur enfichable en mm (con.23 désigne par ex. un connecteur enfichable de diamètre du filetage extérieur d'env. 23 mm).
- Dans la plage de rotation β, les connecteurs de puissance ou d'encodeur ne peuvent être tournés que s'ils n'entrent pas en collision pendant la rotation.
- Sur un moteur EZ3, les connecteurs de puissance et d'encodeur sont reliés mécaniquement et ne peuvent être tournés qu'ensemble.

7.6.8.4 Affectation des broches des connecteurs enfichables (One Cable Solution)

Dans le cas du modèle One Cable Solution, le raccordement de puissance et d'encodeur est effectué via un connecteur commun.

La sonde de température du moteur est raccordée par voie interne à l'encodeur. Les valeurs mesurées de la sonde de température sont transmises via le protocole EnDat 3 de l'encodeur.

Taille de connecteur con.23

Schéma des connexions	Broche	Raccordement	Couleur
	А	Phase U	ВК
/\$B○ ○C}	В	Phase V	BU
	С	Phase W	RD
(A) (G) (O)	E	P_SD -	YE
F _O E	F		
LO OHO	G	Frein +	
	Н	P_SD +	VT
	L	Frein –	
		Conducteur de protection	GNYE

7.6.8.5 Affectation des broches des connecteurs de puissance

La taille et le schéma des connexions du connecteur de puissance dépendent de la taille du moteur. Les fils de raccordement internes du moteur sont marqués conformément à CEI 60757.

Taille de connecteur con.15

Schéma des connexions	Broche	Raccordement	Couleur
B	А	Phase U	ВК
A C	В	Phase V	BU
5	С	Phase W	RD
0^4 0_E 1_O	1	Sonde de température +	
_3 ⊕ 2 /	2	Sonde de température –	
	3	Frein +	RD
	4	Frein –	ВК
		Conducteur de protection	GNYE

Taille de connecteur con.23

Schéma des connexions	Broche	Raccordement	Couleur
	1	Phase U	ВК
	3	Phase V	BU
	4	Phase W	RD
	А	Frein +	RD
	В	Frein –	ВК
	С	Sonde de température +	
	D	Sonde de température –	
		Conducteur de protection	GNYE

Taille de connecteur con.40 (1,5)

Schéma des connexions	Broche	Raccordement	Couleur
	U	Phase U	ВК
/_o O o+	V	Phase V	BU
	W	Phase W	RD
[LM () _ () U]	+	Frein +	RD
\\ 20 (O) o1 //	-	Frein –	BK
	1	Sonde de température +	
	2	Sonde de température –	
		Conducteur de protection	GNYE

7.6.8.6 Affectation des broches des connecteurs d'encodeur

La taille et l'affectation des broches des connecteurs d'encodeur dépendent du type d'encodeur installé et de la taille du moteur.

Encodeurs EnDat 2.1/2.2 numériques, taille de connecteur con.15

Schéma des connexions	Broche	Raccordement	Couleur
012 O1	1	Clock +	VT
11 22	2	Up sense	BNGN
	3		
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ E $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$	4		
	5	Data -	PK
80 70 60 5	6	Data +	GY
10 0	7		
	8	Clock -	YE
	9		
	10	0 V GND	WHGN
	11		
	12	Up +	BNGN

Encodeurs EnDat 2.1/2.2 numériques, taille de connecteur con.17

Schéma des connexions	Broche	Raccordement	Couleur
775	1	Clock +	VT
	2	Up sense	BNGN
	3		
	4		
16694/	5	Data -	PK
	6	Data +	GY
	7		
	8	Clock -	YE
	9		
	10	0 V GND	WHGN
	11		
	12	Up+	BNGN

Encodeur EnDat 2.2 numérique avec batterie tampon, taille de connecteur con.15

Schéma des connexions	Broche	Raccordement	Couleur
12 O1	1	Clock +	VT
11 0 2	2	UBatt +	BU
(10)	3	UBatt -	WH
	4		
	5	Data –	PK
80 70 60 5	6	Data +	GY
10.8	7		
	8	Clock -	YE
	9		
	10	0 V GND	WHGN
	11		
	12	Up +	BNGN
	UBatt +=	DC 3,6 V pour le type d'encodeur EBI en cor	nbinaison avec l'op-
	tion AES d	les servo-variateurs STOBER	

Encodeur EnDat 2.2 numérique avec batterie tampon, taille de connecteur con.17

Schéma des connexions	Broche	Raccordement	Couleur		
	1	Clock +	VT		
((9.0))	2	UBatt +	BU		
	3	UBatt -	WH		
	4				
	5	Data -	PK		
	6	Data +	GY		
	7				
	8	Clock -	YE		
	9				
	10	0 V GND	WHGN		
	11				
	12	Up +	BNGN		
	UBatt + = DC 3,6 V pour le type d'encodeur EBI en combinaison avec l'				
	tion AES des servo-variateurs STOBER				

Encodeur EnDat 2.1 avec signaux incrémentaux sin/cos, taille de connecteur con.15

Schéma des connexions	Broche	Raccordement	Couleur
(12 O1 O	1	Up sense	BU
11 0 2	2	0 V sense	WH
10 0 3	3	Up +	BNGN
$\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} A \end{array}\right) \\ \left(\begin{array}{c$	4	Clock +	VT
(%) \ OC \ ()	5	Clock -	YE
80 70 60 5	6	0 V GND	WHGN
10 0	7	B + (Sin +)	BUBK
	8	B – (Sin –)	RDBK
	9	Data +	GY
	10	A + (Cos +)	GNBK
	11	A – (Cos –)	YEBK
	12	Data -	PK
	А		
	В		
	С		

Encodeur EnDat 2.1 avec signaux incrémentaux sin/cos, taille de connecteur con.17

Schéma des connexions	Broche	Raccordement	Couleur
	1	Up sense	BU
	2		
(1/11) 3 3 (1)	3		
	4	0 V sense	WH
(4)(9)(9)(5)(1)	5		
	6		
	7	Up +	BNGN
	8	Clock +	VT
	9	Clock -	YE
	10	0 V GND	WHGN
	11		
	12	B + (Sin +)	BUBK
	13	B - (Sin -)	RDBK
	14	Data +	GY
	15	A + (Cos +)	GNBK
	16	A – (Cos –)	YEBK
	17	Data -	PK

Résolveur, taille de connecteur con.15

Schéma des connexions	Broche	Raccordement	Couleur
12 01	1	S3 Cos +	BK
11 22	2	S1 Cos –	RD
	3	S4 Sin +	BU
$\begin{pmatrix} \circ \\ \circ \end{pmatrix}$ E $\begin{pmatrix} \circ \\ \downarrow \end{pmatrix}$	4	S2 Sin -	YE
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5		
80 70 60 5	6		
10 0	7	R2 Ref +	YEWH/BKWH ²
	8	R1 Ref –	RDWH
	9		
	10		
	11		
	12		

Résolveur, taille de connecteur con.17

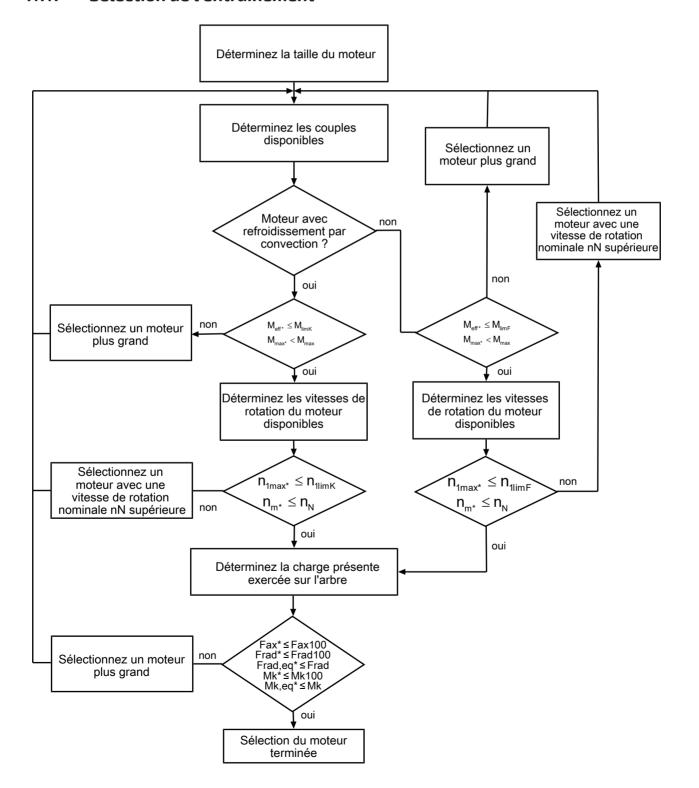
Schéma des connexions	Broche	Raccordement	Couleur
	1	S3 Cos +	ВК
///9_0	2	S1 Cos –	RD
	3	S4 Sin +	BU
	4	S2 Sin –	YE
16614	5		
	6		
	7	R2 Ref +	YEWH/BKWH ³
	8	R1 Ref –	RDWH
	9		
	10		
	11		
	12		

² (en fonction de la marque du résolveur)

^{224 &}lt;sup>3</sup> (en fonction de la marque du résolveur)

7.7 Planification

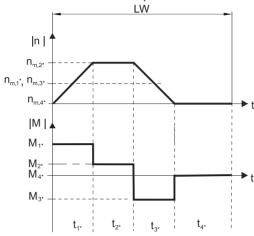
Planifiez vos entraînements avec notre logiciel de conception SERVOsoft. Téléchargez SERVOsoft gratuitement à l'adresse https://www.stoeber.de/fr/ServoSoft.


C'est la méthode de sélection de l'entraînement la plus confortable et la plus sûre, car elle permet de représenter et d'évaluer l'évolution complète du couple et de la vitesse de rotation de l'application sur la courbe caractéristique du motoréducteur.

Dans ce chapitre, seules des considérations de valeurs limites pour des points de fonctionnement concrets peuvent être faites pour la sélection manuelle de l'entraînement.

Vous trouverez une explication des symboles au chapitre Symboles.

Les symboles des valeurs existant réellement dans l'application sont désignés par un *.


7.7.1 Sélection de l'entraînement

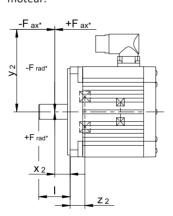
Relevez sur la courbe caractéristique du moteur au chapitre [\triangleright 7.3] la valeur pour M_{lim} , M_{lim} , M

Exemple de fonctionnement cyclique

Les calculs suivants se rapportent à une représentation de la puissance mesurée au niveau de l'arbre du moteur conformément à l'exemple suivant :

Calcul de la vitesse à l'entrée moyenne disponible

$$n_{m^*} = \frac{\left|n_{m,1^*}\right| \cdot t_{1^*} + \ldots + \left|n_{m,n^*}\right| \cdot t_{n^*}}{t_{1^*} + \ldots + t_{n^*}}$$


Si $t_{1*} + ... + t_{3*} \ge 6$ min, calculez n_{m*} sans la pause t_{4*} .

Calcul du couple effectif disponible

$$M_{\text{eff}^{\star}} = \sqrt{\frac{{t_{1^{\star}} \cdot M_{1^{\star}}}^2 + \ldots + {t_{n^{\star}} \cdot M_{n^{\star}}}^2}{{t_{1^{\star}} + \ldots + t_{n^{\star}}}}}$$

7.7.2 Charges admissibles exercées sur l'arbre

Ce chapitre contient les informations sur les charges maximales admissibles exercées sur l'arbre de sortie du moteur.

Туре	Z ₂	F _{ax100}	F _{rad100}	M _{k100}
	[mm]	[N]	[N]	[Nm]
EZ202	12,0	250	750	20
EZ203	12,0	250	750	20
EZ301	24,0	350	1000	39
EZ302	24,0	350	1000	39
EZ303	24,0	350	1000	39
EZ401	19,5	550	1800	62
EZ402	19,5	550	1800	71
EZ404	19,5	550	1800	71
EZ501	19,5	750	2000	79

Туре	Z ₂	F _{ax100}	F _{rad100}	M _{k100}
	[mm]	[N]	[N]	[Nm]
EZ502	19,5	750	2400	95
EZ503	19,5	750	2400	107
EZ505	19,5	750	2400	107
EZ701	24,5	1300	3500	173
EZ702	24,5	1300	4200	208
EZ703	24,5	1300	4200	208
EZ705	24,5	1300	4200	225
EZ802	28,5	1750	5600	384
EZ803	28,5	1750	5600	384
EZ805	28,5	1750	5600	384

Les valeurs indiquées dans le tableau pour les charges admissibles exercées sur l'arbre sont applicables pour:

- Les dimensions d'arbre conformes au catalogue
- Pour une application de force au centre de l'arbre de sortie : x₂ = 1 / 2 (dimensions de l'arbre indiquées au chapitre Croquis cotés),
- Pour les vitesses à la sortie $n_{m^*} \le 100 \text{ tr/min } (F_{ax} = F_{ax100} \text{ ; } F_{rad} = F_{rad100} \text{ ; } M_k = M_{k100})$

Pour les vitesses de sortie $n_{m^*} > 100 \text{ tr/min}$, les formules suivantes s'appliquent :

$$F_{ax} = \frac{F_{ax100}}{\sqrt[3]{\frac{n_{m^*}}{100 \text{ tr/min}}}} \qquad \qquad F_{rad} = \frac{F_{rad100}}{\sqrt[3]{\frac{n_{m^*}}{100 \text{ tr/min}}}} \qquad \qquad M_k = \frac{M_{k100}}{\sqrt[3]{\frac{n_{m^*}}{100 \text{ tr/min}}}}$$

$$F_{rad} = \frac{F_{rad100}}{\sqrt[3]{\frac{n_{m^*}}{100 \text{ tr/min}}}}$$

$$M_{k} = \frac{M_{k100}}{\sqrt[3]{\frac{n_{m^{*}}}{100 | tr/mir}}}$$

Les formules suivantes s'appliquent pour d'autres points d'application de force :

$$M_{k^*} = \frac{2 \cdot F_{ax^*} \cdot y_2 + F_{rad^*} \cdot (x_2 + z_2)}{1000}$$

Dans le cas d'applications avec plusieurs forces axiales et/ou radiales, vous devez additionner les forces vectoriellement.

Par ailleurs, tenez compte du calcul des valeurs équivalentes :

$$M_{k,eq^*} = \sqrt[3]{\frac{\left|n_{m,1^*}\right| \cdot t_{1^*} \cdot \left|M_{k,1^*}^3\right| + \ldots + \left|n_{m,n^*}\right| \cdot t_{n^*} \cdot \left|M_{k,n^*}^3\right|}{\left|n_{m,1^*}\right| \cdot t_{1^*} + \ldots + \left|n_{m,n^*}\right| \cdot t_{n^*}}}$$

$$F_{\text{rad},\text{eq}^*} = \sqrt[3]{\frac{\left|n_{\text{m,1}^*}\right| \cdot t_{\text{1}^*} \cdot \left|F_{\text{rad,1}^*}^3\right| + \ldots + \left|n_{\text{m,n}^*}\right| \cdot t_{\text{n}^*} \cdot \left|F_{\text{rad,n}^*}^3\right|}{\left|n_{\text{m,1}^*}\right| \cdot t_{\text{1}^*} + \ldots + \left|n_{\text{m,n}^*}\right| \cdot t_{\text{n}^*}}}$$

7.7.3 Réduction de charge

Si vous utilisez le moteur dans des conditions ambiantes différentes des conditions ambiantes standard, le couple nominal M_N du moteur est réduit. Ce chapitre contient des informations nécessaires au calcul du couple nominal réduit.

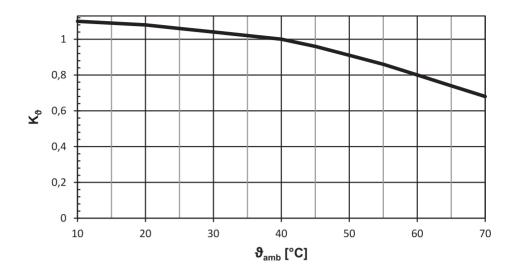


Fig. 5: Réduction de charge en fonction de la température ambiante

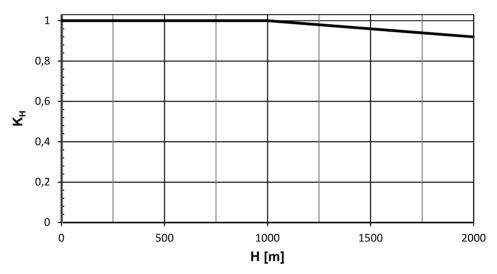


Fig. 6: Réduction de charge en fonction de la hauteur d'installation

Calcul

Si la température ambiante r $\vartheta_{\mbox{\tiny amb}} > 40~^{\circ}\mbox{C}$:

 $M_{Nred} = M_N \cdot K_{\vartheta}$

Si la hauteur d'installation H > 1000 m :

 $M_{Nred} = M_N \cdot K_H$

Si la température ambiante ϑ_{amb} > 40 °C et la hauteur d'installation H > 1000 m :

 $M_{Nred} = M_N \cdot K_H \cdot K_{\vartheta}$

7.8 Autres informations

7.8.1 Directives et normes

Les moteurs brushless synchrones STOBER satisfont aux directives et normes suivantes :

- Directive (basse tension) 2014/35/UE
- EN 60034-1:2010 + Cor.:2010
- EN 60034-5:2001 + A1:2007
- EN 60034-6:1993

7.8.2 Marquages

Les moteurs brushless synchrones STOBER portent les marquages suivants :

Marquage CE: le produit est conforme aux directives EU.

Marquage UKCA: le produit est conforme aux directives du Royaume-Uni.

Marquage cURus « Servo and Stepper Motors – Component » ; enregistré sous le numéro UL E488992 auprès des Underwriters Laboratories USA (option).

7.8.3 Autres documentations

Vous trouverez d'autres documentations relatives au produit à l'adresse http://www.stoeber.de/fr/download

Saisissez le nº ID de la documentation dans le champ <u>Critère de recherche</u>.

Documentation	ID
Instructions de service des moteurs brushless synchrones EZ	443032_fr

À proximité des clients dans le monde entier

Nous vous conseillons et vous assistons avec compétence et disponibilité et intervenons 24 heures sur 24 en cas de panne :

- 4 centres de distribution en Allemagne
- Présence dans plus de 40 pays dans le monde entier
- STOBER RÉSEAU DE SERVICES regroupant plus de 80 partenaires à l'échelle mondiale

Allemagne

STÖBER Antriebstechnik GmbH + Co. KG

Kieselbronner Straße 12

75177 Pforzheim

Tél. +49 7231 582-0

sales@stoeber.de

www.stober.com

Assistance téléphonique 24 heures sur 24 +49 7231 582-3000

Filiales

STOBER AUSTRIA	STOBER SOUTH EAST ASIA
www.stoeber.at	www.stober.sg
Tél +43 7613 7600-0	sales@stober.sg
sales@stoeber.at	
STOBER CHINA	STOBER SWITZERLAND
www.stoeber.cn	www.stoeber.ch
Tél. +86 512 5320 8850	Tél. +41 56 496 96 50
sales@stoeber.cn	sales@stoeber.ch
STOBER FRANCE	STOBER TAIWAN
www.stober.fr	www.stober.tw
Tél. +33 4 78.98.91.80	Tél. +886 4 2358 6089
sales@stober.fr	sales@stober.tw
STOBER ITALY	STOBER TURKEY
www.stober.it	www.stober.com
Tél. +39 02 93909570	Tél. +90 216 510 2290
sales@stober.it	sales-turkey@stober.com
STOBER JAPAN	STOBER UNITED KINGDOM
www.stober.co.jp	www.stober.co.uk
Tél +81 3 5875 7583	Tél. +44 1543 458 858
sales@stober.co.jp	sales@stober.co.uk
STOBER USA	
www.stober.com	
Tél +1 606 759 5090	
sales@stober.com	

9 Annexe

Table des matières

9.1	Symboles	234
9.2	Marques	237
9.3	Conditions de vente et de livraison	237
9.4	Mentions légales	237

9.1 Symboles

Les symboles des valeurs existant réellement dans l'application sont désignés par un *.

Signes conve- nus	Unité	Explication
B ₁₀	-	Nombre de cycles à la fin desquels 10 % des composants sont tombés en panne
B _{10D}	_	Nombre de cycles à la fin desquels jusqu'à 10 % des composants sont tombés
		en panne, compromettant la sécurité
C_{dyn}	N	Capacité de charge dynamique
C_{maxPU}	F	Capacité de charge maximale du bloc de puissance
$C_{N,PU}$	F	Capacité de charge nominale du bloc de puissance
C_{PU}	F	Capacité intrinsèque du bloc de puissance
D _{IA}	%	Réduction du courant nominal en fonction de la hauteur d'installation
D_T	%	Réduction du courant nominal en fonction de la température ambiante
ΔJ_{B}	kgcm ²	Moment d'inertie de masse additionnel d'un moteur avec frein
$\Delta m_{\scriptscriptstyle B}$	kg	Poids additionnel d'un moteur avec frein
ED ₁₀	%	Durée de mise en service rapportée à 10 minutes
η_{gt}	%	Rendement de la vis à billes
f_{2PU}	Hz	Fréquence de sortie du bloc de puissance
F_ax	N	Force axiale admissible à la sortie
F_{ax0}	N	Force axiale admissible à l'arrêt du moteur pour l'arrêt de la charge via le couple moteur
$F_{ax,1*} - F_{ax,n*}$	N	Force axiale disponible au cours de la période respective
F _{ax100}	N	Force axiale admissible à la sortie pour n _{m*} ≤ 100 tr/min
F _{ax300}	N	Force axiale admissible à la sortie pour n _{m*} ≤ 300 tr/min
F _{ax,eff*}	N	Force axiale effective disponible à la sortie
F _{ax,ss}	N	Force axiale pouvant être transmise par la frette de serrage
f_N	Hz	Fréquence du champ tournant à vitesse de rotation nominale
$f_{PWM,PU}$	Hz	Fréquence de la modulation de largeur d'impulsion du bloc de puissance
F_{rad}	N	Force radiale admissible à la sortie
F _{rad100}	N	Force radiale admissible à la sortie pour n _m , ≤ 100 tr/min
F _{rad300}	N	Force radiale admissible à la sortie pour n _m , ≤ 300 tr/min
Н	m	Hauteur d'installation au-dessus du niveau de la mer
Io	Α	Courant à l'arrêt
I _{1maxCU}	Α	Courant d'entrée maximal de la pièce de commande
I _{1maxPU}	Α	Courant d'entrée maximal du bloc de puissance
I _{1N,PU}	Α	Courant nominal d'entrée du bloc de puissance
I _{2maxPU}	Α	Courant de sortie maximal du bloc de puissance
I _{2N,PU}	Α	Courant nominal de sortie du bloc de puissance
I _{2N,PU(red)}	Α	Courant nominal de sortie réduit du bloc de puissance
I _{2PU(A)}	Α	Courant de sortie du bloc de puissance pour l'axe A
I _{2PU(B)}	А	Courant de sortie du bloc de puissance pour l'axe B
I _{max}	А	Courant maximal
I _N	А	Courant nominal
I _{N,B}	Α	Courant nominal du frein à 20 °C
I _{N,F}	Α	Courant nominal de la ventilation forcée
I _{N,MF}	Α	Courant nominal du self ou du filtre moteur
J_{Bstop}	kgcm ²	Moment d'inertie de masse de référence en cas de freinages à pleine vitesse de rotation : $J_{Bstop} = J_{dyn} \times 2$
J _{dyn}	kgcm ²	Moment d'inertie de masse d'un moteur dynamique
J _{tot}	kgm²	Moment d'inertie de masse total (par rapport à l'arbre du moteur)
K _{EM}	V/1000 tr/	Constante de tension : valeur de crête de la tension induite entre les phases
	min	U, V, W du moteur à température de fonctionnement à une vitesse de rotation de 1000 tr/min
K _H	-	Facteur de réduction de charge hauteur d'installation
K _{M0}	Nm/A	Constante de couple : rapport entre le couple à l'arrêt et couple de frotte-
IVIU	,	ment et le courant à l'arrêt ; $K_{M0} = (M_0 + M_R) / I_0$ (tolérance ±10 %)

Signes conve-	Unité	Explication
nus		
K _{M,N}	Nm/A	Constante de couple : rapport entre le couple nominal $M_{\scriptscriptstyle N}$ et le courant nomi-
		nal I_N ; $K_{M,N} = M_N / I_N$ (tolérance ±10 %)
K _{mot,th}	-	Facteur de détermination du couple limite thermique
K _ð	-	Facteur de réduction des caractéristiques de la température ambiante
I	mm	Longueur de l'arbre de sortie
L ₁₀	_	Durée de vie nominale des roulements pour une durée de vie probable de
	h	90 % dans 10 ⁶ roulements Durée de vie des roulements
L _{10h}	h dBA	Niveau sonore de la ventilation forcée dans la plage de fonctionnement opti-
L _{pA,F}		male
L _{U-V}	mH	Inductance d'enroulement d'un moteur entre deux phases (calculée dans le circuit oscillant)
m	kg	Poids (pour les réducteurs sans lubrifiant)
M _o	Nm	Couple à l'arrêt : couple que le moteur peut générer durablement à une vi-
		tesse de rotation de 10 tr/min (tolérance ±5 %)
M _{Bdyn}	Nm	Couple de freinage dynamique à 100 °C
M _{Bstat}	Nm	Couple de freinage statique du frein moteur à 100 °C
m _{dyn}	kg	Poids d'un moteur dynamique Couple moteur effectif disponible
M _{eff*}	Nm	Poids de la ventilation forcée
m _F	kg Nm	Couple de décrochage disponible à la sortie
M _k	Nm	
M _{k100}	Nm	Couple de décrochage admissible à la sortie pour n _{m*} ≤ 100 tr/min
M _{k300}	Nm	Couple de décrochage admissible à la sortie pour n _{m*} ≤ 300 tr/min
M _L M _{lim}	Nm	Couple de charge Limite de couple sans compensation de shuntage
M _{lim}	Nm	Courbe caractéristique de couple du moteur avec ventilation forcée en fonc-
		tionnement continu
M_{limFW}	Nm	Limite de couple avec compensation de shuntage (uniquement pour l'exploi- tation sur servo-variateurs STOBER)
M_{limK}	Nm	Courbe caractéristique de couple du moteur avec refroidissement par convection en fonctionnement continu
M _{max}	Nm	Couple maximal : couple maximal admissible que le moteur peut générer brièvement (à l'accélération ou au freinage) (tolérance ±10 %)
M _{n*}	Nm	Couple moteur disponible au cours de la énième période
M _N	Nm	Couple nominal : couple maximal d'un moteur en mode S1 à vitesse de rota-
		tion nominale n _N (tolérance ±5 %)
		Vous pouvez calculer approximativement d'autres couples de la manière suivante : $M_{N^*} = K_{M0} \cdot I^* - M_R$.
M _{Nred}	Nm	Couple nominal du moteur réduit
M _{op}	Nm	Couple du moteur dans le point de fonctionnement à partir de la courbe caractéristique du moteur si n_{im^*}
M _R	Nm	Couple de frottement (des roulements et joints) d'un moteur à température d'enroulement $\Delta \theta = 100 \text{ K}$
n	tr/min	Vitesse de rotation
n _{1m*}	tr/min	Vitesse à l'entrée moyenne disponible
n _{1max}	min ⁻¹	Vitesse à l'entrée maximale admissible
N _{Bstop}	_	Nombre admissible de freinages à pleine vitesse de rotation (n = 3000tr/min) avec J_{Bstop} ($M_L = 0$). Si les valeurs de n et J_{Bstop} sont différentes, la formule sui-
	+ 100 :-	vante s'applique : N _{Bstop} = W _{B,Rlim} / W _{B,R/B} .
n _{m*}	tr/min	Vitesse de rotation moyenne du moteur disponible
n _{m,n*}	tr/min	Vitesse de rotation moyenne du moteur disponible au cours de la énième période
n _{mot}	tr/min	Vitesse de rotation du moteur
n _N	tr/min	Vitesse de rotation nominale : vitesse de rotation indiquée pour le couple nominal M_{N}
p	-	Nombre de paires de pôles
P_{effRB}	W	Puissance effective sur la résistance de freinage externe

Signes conve-	Unité	Explication
nus		·
P _{maxRB}	W	Puissance maximale sur la résistance de freinage externe
P _N	kW	Puissance nominale : puissance que le moteur peut générer en mode S1 au
		point nominal (tolérance ±5 %)
P _{N,F}	W	Puissance nominale de la ventilation forcée
P _{N,PU}	W	Puissance nominale du bloc de puissance
P _{st}	mm	Pente de la vis à billes
R _{U-V}	Ω	Résistance d'enroulement d'un moteur entre deux phases à une température d'enroulement de 20 °C
P _V	W	Puissance dissipée
P _{V,CU}	W	Puissance dissipée de la pièce de commande
q _{vF}	m³/h	Puissance de refoulement de la ventilation forcée à l'air libre
R _{2minRB}	Ω	Résistance minimale de la résistance de freinage externe
	Ω	Résistance de la résistance de freinage interne
R _{intRB}	°C	Température ambiante maximale
ϑ _{amb,max}	s	Temps
	ms	Temps de liaison : intervalle entre la coupure du courant et l'atteinte du
t _{1B}	1115	couple de freinage nominal
t _{11B}	ms	Retard de réponse : intervalle entre la coupure du courant et la montée en couple
t _{2B}	ms	Temps de déblocage (également : temps de coupure) ; intervalle de temps entre l'activation du courant et l'ouverture totale du frein
t _{dec}	ms	Temps de freinage
T _{el}	ms	Constante de temps électrique : rapport entre l'inductance et la résistance
		d'enroulement d'un moteur : T _{el} = L _{U-V} / R _{U-V}
t _{n*}	S	Durée de la énième période
τ _{th}	°C	Constante de temps thermique
ϑ_{amb}	°C	Température ambiante
U _{1CU}	V	Tension d'entrée de la pièce de commande
U _{1PU}	V	Tension d'entrée du bloc de puissance
U _{2PU}	V	Tension de sortie du bloc de puissance
U _{2PU,ZK}	V	Tension de sortie du bloc de puissance pour le couplage du circuit intermé-
21 0,210		diaire (valeurs typiques : 400 V _{CA} correspondent à 560 V _{CC} , 480 V _{CA} corres-
		pondent à 680 V_{cc})
U _{max}	V	Tension maximale
U _{N,B}	V	Tension nominale du frein
U _{N,F}	V	Tension nominale de la ventilation forcée
U _{offCH}	V	Seuil de coupure du hacheur de freinage
U _{onCH}	V	Seuil d'enclenchement du hacheur de freinage
U _{zK}	V	Tension du circuit intermédiaire : caractéristique d'un servo-variateur
V _{ax}	mm/s	Vitesse axiale
V _{ax,m*}	mm/s	Vitesse axiale moyenne disponible
$V_{ax,m1*} - V_{ax,mn*}$	mm/s	Vitesse axiale moyenne disponible au cours de la période respective
W _{B,R/B}	J	Travail de frottement par freinage
W _{B,Rlim}	J	Travail de frottement jusqu'à la limite d'usure
W _{B,Rmax/h}	J/h	Travail de frottement maximal par heure en cas de freinage individuel
X ₂	mm	Écart de l'épaulement de l'arbre au point d'application de force
X _{B,N}	mm	Entrefer nominal du frein
y ₂	mm	Écart de l'axe de l'arbre au point d'application de la force axiale
z_2	mm	Écart de l'épaulement de l'arbre au centre du roulement de sortie

9.2 Marques

Les noms suivants utilisés en association avec l'appareil, ses options et ses accessoires, sont des marques ou des marques déposées d'autres entreprises :

CANopen°, CANopen° et CiA° sont des marques communautaires déposées de CAN in

CiA[®] AUTOMATION e.V., Nuremberg, Allemagne.

CODESYS® est une marque déposée de la société CODESYS GmbH sise à

Kempten, Allemagne.

DESINA® est une marque déposée du VDW (Association des constructeurs

allemands de machines-outils) e. V., Francfort, Allemagne.

EnDat[®] EnDat[®] et le logo EnDat[®] sont des marques déposées de Dr. Johannes Hei-

denhain GmbH, Traunreut, Allemagne.

EtherCAT°, Safety over EtherCAT° et TwinCAT° sont des marques déposées
Safety over EtherCAT°, et des technologies brevetées qui sont commercialisées sous licence par la

TwinCAT[®] société Beckhoff Automation GmbH, Verl, Allemagne.

HIPERFACE® HIPERFACE® et le logo HIPERFACE DSL® sont des marques déposées de la

société SICK STEGMANN GmbH, Donaueschingen, Allemagne.

Intel[®], le logo Intel[®], Intel[®] Atom[™] et Intel[®] Core[™] sont des marques dépo-Intel[®] Atom[™], sées d'Intel Corporation ou de leurs filiales aux États-Unis et dans d'autres

Intel[®] Core[™] pays.

PLCopen® est une marque déposée de PLCopen-Organisation, Gorinchem,

Pays-Bas.

PROFIBUS°, PROFIBUS° et PROFINET° sont des marques déposées de PROFIBUS Nutze-

PROFINET® rorganisation e. V. Karlsruhe, Allemagne.

PROFIdrive® et PROFIsafe® sont des marques déposées de Siemens AG,

PROFIsafe® Munich, Allemagne.

RINGFEDER® est une marque déposée de VBG GROUP TRUCK EQUIPMENT

GmbH, Krefeld, Allemagne.

speedtec[®] speedtec[®] est une marque déposée de TE Connectivity Industrial GmbH,

Niederwinkling, Allemagne.

Windows[°], le logo Windows[°], Windows[°] 7 et Windows[°] 10 Windows[°] 7, sont des marques déposées de Microsoft Corporation aux États-Unis et/ou

Windows 10 dans d'autres pays.

9.3 Conditions de vente et de livraison

Vous trouverez nos conditions de vente et de livraison toujours à jour à l'adresse http://www.stoeber.de/fr/gtc.

9.4 Mentions légales

Catalogue Entraînements et Automation ID 442711 fr.

Pour les motoréducteurs correspondants, voir notre catalogue Motoréducteurs brushless synchrones ID 442437 fr.

Reportez-vous à la page http://www.stoeber.de/fr/download pour les fichiers PDF actuels.

STÖBER Antriebstechnik GmbH + Co. KG Kieselbronner Straße 12 75177 Pforzheim Deutschland Tél. +49 7231 582-0 mail@stoeber.de www.stober.com

Assistance téléphonique 24 heures sur 24 +49 7231 582-3000